
This document is in the Public Domain.
It may be revised, reproduced, or distributed by anyone for any purpose without restriction.

De Re BASIC!
Version 1.90

March 31, 2016

Original Author Paul Laughton, 2011 Page 2 De Re BASIC!

Table of Contents

Changes in this Version.. 24

About the Title, De Re BASIC! .. 25

About the Cover Art .. 25

Credits ... 25

Technical Editor ... 25

Getting BASIC! ... 25

BASIC! Forum .. 25

BASIC! Tutorial .. 25

BASIC! Operation ... 26

Permissions ... 26

Editor .. 26

Editing the Program ... 26

Multiple Commands on a Line .. 27

Line Continuation .. 27

- Format Line... 27

Menus ... 28

Run .. 34

Menu ... 34

Crashes .. 35

A BASIC! Program .. 35

Command Description Syntax .. 35

Upper and Lower Case ... 35

<nexp>, <sexp> and <lexp> .. 35

<nvar>, <svar> and <lvar> .. 36

Array[] and Array$[] ... 36

Array[{<start>,<length>}] and Array$[{<start>,<length>}] ... 36

{something} ... 36

{ A | B |C } ... 36

X, 36

{,n} 36

Original Author Paul Laughton, 2011 Page 3 De Re BASIC!

<statement> .. 36

Optional Parameters.. 36

Numbers ... 37

Strings ... 37

Variables ... 38

Variable Names ... 38

Variable Types ... 38

Scalar and Array Variables ... 39

Scalars ... 39

Arrays .. 39

Array Segments ... 39

Array Commands ... 40

Data Structures and Pointers in BASIC! .. 43

What is a Pointer ... 43

Lists ... 44

List Commands .. 45

Bundles ... 47

Bundle Auto-Create ... 47

Bundle Commands ... 48

Stacks .. 50

Stack Commands ... 50

Queues .. 51

Comments ... 51

! - Single Line Comment ... 51

Rem - Single Line Comment (legacy) .. 51

!! - Block Comment .. 52

% - Middle of Line Comment .. 52

Expressions ... 52

Numeric Expression <nexp> ... 52

Numeric Operators <noperator> .. 52

Numeric Expression Examples .. 52

Pre- and Post-Increment Operators ... 52

Original Author Paul Laughton, 2011 Page 4 De Re BASIC!

String Expression <sexp> ... 53

Logical Expression <lexp> .. 53

Logical Operators ... 53

Examples of Logical Expressions ... 54

Parentheses ... 54

Assignment Operations ... 54

Let ... 54

OpEqual Assignment Operations ... 55

Math Functions ... 55

BOR(<nexp1>, <nexp2>) .. 55

BAND(<nexp1>, <nexp2>) .. 55

BXOR(<nexp1>, <nexp2>) .. 56

BNOT(<nexp>) ... 56

ABS(<nexp>) .. 56

SGN(<nexp>) ... 56

RANDOMIZE({<nexp>}) .. 56

RND()... 56

MAX(<nexp>, <nexp>) ... 57

MIN(<nexp>, <nexp>) .. 57

CEIL(<nexp>).. 57

FLOOR(<nexp>).. 57

INT(<nexp>) ... 57

FRAC(<nexp>) .. 57

MOD(<nexp1>, <nexp2>) ... 57

ROUND(<value_nexp>{, <count_nexp>{, <mode_sexp>}}).. 57

SQR(<nexp>) .. 58

CBRT(<nexp>) .. 58

LOG(<nexp>) ... 58

LOG10(<nexp>) .. 58

EXP(<nexp>) .. 58

POW(<nexp1>, <nexp2>) ... 58

HYPOT(<nexp_x>, <nexp_y) ... 59

Original Author Paul Laughton, 2011 Page 5 De Re BASIC!

PI() .. 59

SIN(<nexp>) ... 59

COS(<nexp>) .. 59

TAN(<nexp>) ... 59

SINH(<nexp>) .. 59

COSH(<nexp>) ... 59

ASIN(<nexp>) ... 59

ACOS(<nexp>) ... 59

ATAN(<nexp>) ... 59

ATAN2(<nexp_y>, <nexp_x>) ... 59

TODEGREES(<nexp>) ... 59

TORADIANS(<nexp>) .. 60

VAL(<sexp>)... 60

IS_NUMBER(<sexp>) .. 60

LEN(<sexp>) ... 60

HEX(<sexp>) .. 60

OCT(<sexp>) .. 60

BIN(<sexp>) ... 60

SHIFT(<value_nexp>, <bits_nexp>) .. 61

ASCII(<sexp>{, <index_nexp>}) ... 61

UCODE(<sexp>{, <index_nexp>}) ... 61

IS_IN(<sub_sexp>, <base_sexp>{, <start_nexp>})... 61

STARTS_WITH(<sub_sexp>, <base_sexp>{, <start_nexp>}) ... 61

ENDS_WITH(<sub_sexp>, <base_sexp>) .. 62

GR_COLLISION(<object_1_nvar>, <object_2_nvar>) .. 62

BACKGROUND() ... 62

Time Functions .. 62

CLOCK() ... 62

TIME() ... 62

TIME(<year_exp>, <month_exp>, <day_exp>, <hour_exp>, <minute_exp>, <second_exp>)............... 63

String Functions... 63

GETERROR$() ... 63

Original Author Paul Laughton, 2011 Page 6 De Re BASIC!

CHR$(<nexp>, ...) ... 64

LEFT$(<sexp>, <count_nexp>).. 64

MID$(<sexp>, <start_nexp>{, <count_nexp>}) ... 64

RIGHT$(<sexp>, <count_nexp>) ... 64

REPLACE$(<sexp>, <argument_sexp>, <replace_sexp>) ... 65

TRIM$(<sexp>{, <test_sexp>}).. 65

LTRIM$(<sexp>{, <test_sexp>}) .. 65

RTRIM$(<sexp>{, <test_sexp>}) ... 65

WORD$(<source_sexp>, <n_nexp> {, <test_sexp>}) ... 65

ENCODE$(<type_sexp>, {<qualifier_sexp>}, <source_sexp>) .. 66

DECODE$(<type_sexp>, {<qualifier_sexp>}, <source_sexp>) .. 66

ENCODE$(<charset_sexp>, <source_sexp>) ... 67

DECODE$(<charset_sexp>, <buffer_sexp>) .. 68

STR$(<nexp>) .. 68

LOWER$(<sexp>) ... 68

UPPER$(<sexp>) .. 68

VERSION$() .. 68

INT$(<nexp>) ... 68

HEX$(<nexp>) .. 68

OCT$(<nexp>) .. 69

BIN$(<nexp>)... 69

USING$({<locale_sexp>} , <format_sexp> { , <exp>}...) ... 69

Locale expression .. 69

Format expression ... 70

Integer values .. 73

FORMAT_USING$(<locale_sexp>, <format_sexp> { , <exp>}...) .. 73

FORMAT$(<pattern_sexp>, <nexp>) .. 73

Notes ... 74

Examples ... 74

User-Defined Functions ... 75

Variable Scope ... 75

Data Structures in User-Defined Functions .. 75

Original Author Paul Laughton, 2011 Page 7 De Re BASIC!

Commands .. 76

Fn.def name|name$({nvar}|{svar}|Array[]|Array$[], ... {nvar}|{svar}|Array[]|Array$[])................ 76

Fn.rtn <sexp>|<nexp> .. 77

Fn.end ... 77

Call <user_defined_function> .. 77

Program Control Commands ... 78

If / Then / Else / Elseif / Endif ... 78

If / Then / Else ... 78

For - To - Step / Next.. 79

F_N.continue ... 80

F_N.break .. 80

While <lexp> / Repeat ... 80

W_R.continue .. 80

W_R.break... 80

Do / Until <lexp>.. 80

D_U.continue .. 81

D_U.break ... 81

Labels, GOTO, GOSUB, and RETURN: Traditional BASIC .. 81

Label .. 81

GoTo <label> ... 82

GoTo <index_nexp>, <label>... ... 82

GoSub <label> / Return .. 82

GoSub <index_nexp>, <label>... / Return ... 83

Using Source Code from Multiple Files ... 83

Include FilePath ... 83

Run <filename_sexp> {, <data_sexp>} .. 84

Switch Commands ... 84

Nesting Switch Operations ... 85

Sw.begin <exp> .. 85

Sw.case <exp>, 85

Sw.case <op><exp>.. 86

Sw.break .. 86

Original Author Paul Laughton, 2011 Page 8 De Re BASIC!

Sw.default ... 86

Sw.end... 86

Interrupt Labels (Event Handlers) .. 86

All Interrupt Labels .. 87

OnError: .. 87

OnConsoleTouch: .. 88

ConsoleTouch.resume ... 88

OnBackKey: ... 88

Back.resume .. 88

OnMenuKey:.. 88

MenuKey.resume .. 88

OnKeyPress:... 88

Key.resume .. 89

OnLowMemory: ... 89

LowMemory.resume .. 89

End{ <msg_sexp>} ... 89

Exit .. 89

READ – DATA – RESTORE Commands ... 89

Read.data <number>|<string>{,<number>|<string>...,<number>|<string>}....................................... 89

Read.next <var>, 89

Read.from <nexp> ... 90

Debug Commands ... 90

Debug.on ... 90

Debug.off .. 90

Debug.echo.on .. 90

Echo.on ... 90

Debug.echo.off .. 90

Echo.off ... 91

Debug.print ... 91

Debug.dump.scalars .. 91

Debug.dump.array Array[] ... 91

Debug.dump.bundle <bundlePtr_nexp> .. 91

Original Author Paul Laughton, 2011 Page 9 De Re BASIC!

Debug.dump.list <listPtr_nexp> ... 91

Debug.dump.stack <stackPtr_nexp> .. 91

Debug.show.scalars ... 91

Debug.show.array Array[] .. 91

Debug.show.bundle <bundlePtr_nexp> ... 92

Debug.show.list <listPtr_nexp> .. 92

Debug.show.stack <stackPtr_nexp> ... 92

Debug.watch var, 92

Debug.show.watch .. 92

Debug.show.program .. 92

Debug.show .. 93

Fonts ... 93

Font.load <font_ptr_nvar>, <filename_sexp> .. 93

Font.delete {<font_ptr_nexp>} .. 93

Font.clear .. 93

Console I/O ... 94

Output Console ... 94

Print {<exp> {,|;}} 94

? {<exp> {,|;}} 94

Print with User-Defined Functions ... 94

Cls ... 95

Console.front ... 95

Console.line.count <count_nvar> ... 95

Console.line.text <line_nexp>, <text_svar> .. 95

Console.line.touched <line_nvar> {, <press_lvar>} ... 95

Console.save <filename_sexp> .. 95

Console.title { <title_sexp>} ... 96

User Input and Interaction ... 96

Dialog.message {<title_sexp>}, {<message_sexp>}, <sel_nvar> {, <button1_sexp>{,

<button2_sexp>{, <button3_sexp>}}} ... 96

Dialog.select <sel_nvar>, <Array$[]>|<list_nexp> {,<title_sexp>} ... 97

Input {<prompt_sexp>}, <result_var>{, {<default_exp>}{, <canceled_nvar>}} 97

Original Author Paul Laughton, 2011 Page 10 De Re BASIC!

Inkey$ <svar>... 98

Popup <message_sexp> {{, <x_nexp>}{, <y_nexp>}{, <duration_lexp>}} ... 98

Select <sel_nvar>, <Array$[]>|<list_nexp> {,<title_sexp> {, <message_sexp> } } {,<press_lvar> } 99

Text.input <svar>{, { <text_sexp>} , <title_sexp> } .. 99

TGet <result_svar>, <prompt_sexp> {, <title_sexp>} .. 100

Kb.hide .. 100

Kb.show ... 100

Kb.toggle ... 100

Kb.showing <lvar>.. 100

OnKbChange: ... 101

Kb.resume ... 101

The Soft Keyboard and the BACK Key ... 101

Working with Files ... 101

Paths Explained ... 101

Paths and Case-sensitivity .. 102

Mark and Mark Limit ... 103

File Commands .. 104

File.delete <lvar>, <path_sexp> ... 104

File.dir <path_sexp>, Array$[] {,<dirmark_sexp>} ... 104

File.exists <lvar>, <path_sexp>... 104

File.mkdir <path_sexp> .. 104

File.rename <old_path_sexp>, <new_path_sexp>.. 105

File.root <svar> .. 105

File.size <size_nvar>, <path_sexp> ... 105

File.type <type_svar>, <path_sexp> ... 105

Text File I/O ... 105

Text.open {r|w|a}, <file_table_nvar>, <path_sexp> ... 106

Text.close <file_table_nexp> ... 106

Text.readln <file_table_nexp> {,<svar>}... .. 106

Text.writeln <file_table_nexp>, <parms same as Print> ... 107

Text.eof <file_table_nexp>, <lvar> ... 107

Text.position.get <file_table_nexp>, <position_nvar> .. 107

Original Author Paul Laughton, 2011 Page 11 De Re BASIC!

Text.position.set <file_table_nexp>, <position_nexp> ... 107

Text.position.mark {{<file_table_nexp>}{, <marklimit_nexp>}} ... 108

GrabURL <result_svar>, <url_sexp>{, <timeout_nexp>} ... 108

GrabFile <result_svar>, <path_sexp>{, <unicode_flag_lexp>} ... 108

Byte File I/O .. 109

Byte.open {r|w|a}, <file_table_nvar>, <path_sexp> .. 109

Byte.close <file_table_nexp> ... 109

Byte.read.byte <file_table_nexp> {,<nvar>}... .. 109

Byte.write.byte <file_table_nexp> {{,<nexp>}...{,<sexp>}} .. 110

Byte.read.number <file_table_nexp> {,<nvar>...} ... 110

Byte.write.number <file_table_nexp> {,<nexp>}... ... 110

Byte.read.buffer <file_table_nexp>, <count_nexp>, <buffer_svar> .. 111

Byte.write.buffer <file_table_nexp>, <buffer_sexp> .. 111

Byte.eof <file_table_nexp>, <lvar>... 111

Byte.position.get <file_table_nexp>, <position_nvar>.. 111

Byte.position.set <file_table_nexp>, <position_nexp> ... 111

Byte.position.mark {{<file_table_nexp>}{, <marklimit_nexp>}} .. 112

Byte.truncate <file_table_nexp>,<length_nexp> .. 112

Byte.copy <file_table_nexp>,<output_file_sexp> ... 112

HTML .. 112

Introduction .. 112

HTML Commands .. 113

Html.open {<ShowStatusBar_lexp> {, <Orientation_nexp>}} .. 113

Html.orientation <nexp> .. 113

Html.load.url <file_sexp> ... 113

Html.load.string <html_sexp> .. 114

Html.post <url_sexp>, <list_nexp> ... 114

Html.get.datalink <data_svar> ... 114

Html.go.back ... 115

Html.go.forward .. 115

Html.close ... 115

Html.clear.cache .. 115

Original Author Paul Laughton, 2011 Page 12 De Re BASIC!

Html.clear.history .. 115

Related Commands ... 115

Browse <url_sexp> .. 115

Http.post <url_sexp>, <list_nexp>, <result_svar> ... 116

TCP/IP Sockets ... 116

TCP/IP Client Socket Commands .. 117

Socket.client.connect <server_sexp>, <port_nexp> { , <wait_lexp> } .. 117

Socket.client.status <status_nvar> ... 117

Socket.client.server.ip <svar>... 117

Socket.client.read.line <line_svar> ... 117

Socket.client.read.ready <nvar> ... 117

Socket.client.read.file <file_nexp> ... 117

Socket.client.write.line <line_sexp> ... 118

Socket.client.write.bytes <sexp> .. 118

Socket.client.write.file <file_nexp> .. 118

Socket.client.close ... 118

TCP/IP Server Socket Commands ... 118

Socket.myIP <svar> .. 118

Socket.myIP <array$[]>{, <nvar>} ... 118

Socket.server.create <port_nexp> ... 119

Socket.server.connect {<wait_lexp>} ... 119

Socket.server.status <status_nvar> .. 119

Socket.server.read.line <svar> ... 119

Socket.server.read.ready <nvar>.. 119

Socket.server.write.line <line_sexp> .. 119

Socket.server.write.bytes <sexp> ... 119

Socket.server.write.file <file_nexp> ... 120

Socket.server.read.file <file_nexp> .. 120

Socket.server.disconnect ... 120

Socket.server.close .. 120

Socket.server.client.ip <nvar> .. 120

FTP Client .. 120

Original Author Paul Laughton, 2011 Page 13 De Re BASIC!

Ftp.open <url_sexp>, <port_nexp>, <user_sexp>, <pw_sexp> .. 120

Ftp.close .. 120

Ftp.put <source_sexp>, <destination_sexp> .. 120

Ftp.get <source_sexp>, <destination_sexp> ... 121

Ftp.dir <list_nvar> {,<dirmark_sexp>} .. 121

Ftp.cd <new_directory_sexp> .. 121

Ftp.rename <old_filename_sexp>, <new_filename_sexp> ... 121

Ftp.delete <filename_sexp> ... 121

Ftp.rmdir <directory_sexp> ... 122

Ftp.mkdir <directory_sexp> ... 122

Bluetooth .. 122

Bt.open {0|1}... 122

Bt.close ... 123

Bt.connect {0|1} .. 123

Bt.disconnect... 123

Bt.reconnect .. 123

Bt.status {{<connect_var>}{, <name_svar>}{, <address_svar>}} .. 123

Bt.write {<exp> {,|;}} 124

Bt.read.ready <nvar> ... 124

OnBtReadReady: ... 124

Bt.onReadReady.resume.. 124

Bt.read.bytes <svar> .. 125

Bt.device.name <svar>... 125

Bt.set.UUID <sexp> .. 125

Communication: Phone and Text ... 125

Email.send <recipient_sexp>, <subject_sexp>, <body_sexp> ... 125

MyPhoneNumber <svar> ... 125

Phone.call <sexp> .. 125

Phone.dial <sexp>.. 126

Phone.rcv.init .. 126

Phone.rcv.next <state_nvar>, <number_svar> ... 126

Sms.send <number_sexp>, <message_sexp> ... 126

Original Author Paul Laughton, 2011 Page 14 De Re BASIC!

Sms.rcv.init .. 126

Sms.rcv.next <svar> ... 126

Time and Timers .. 127

Time and TimeZone Commands ... 127

Time {<time_nexp>,} Year$, Month$, Day$, Hour$, Minute$, Second$, WeekDay, isDST 127

TimeZone.set { <tz_sexp> } .. 128

TimeZone.get <tz_svar> ... 128

TimeZone.list <tz_list_pointer_nexp> .. 128

Timer Interrupt and Commands ... 128

Timer.set <interval_nexp> ... 128

OnTimer: ... 128

Timer.resume .. 128

Timer.clear .. 129

Sample Code .. 129

Clipboard... 129

Clipboard.get <svar> .. 129

Clipboard.put <sexp> ... 129

Encryption ... 129

Encrypt {<pw_sexp>}, <source_sexp>, <encrypted_svar> .. 129

Decrypt <pw_sexp>, <encrypted_sexp>, <decrypted_svar> ... 129

Ringer.. 130

Ringer.get.mode <nvar> .. 130

Ringer.set.mode <nexp> .. 130

Ringer.get.volume <vol_nvar> { , <max_nvar> } ... 130

Ringer.set.volume <nexp> ... 130

String Operations .. 130

Join <source_array$[]>, <result_svar> {, <separator_sexp>{, <wrapper_sexp}} 131

Join.all <source_array$[]>, <result_svar> {, <separator_sexp>{, <wrapper_sexp}} 131

Split <result_array$[]>, <sexp> {, <test_sexp>} ... 131

Split.all <result_array$[]>, <sexp> {, <test_sexp>} .. 131

Speech Conversion .. 132

Text To Speech .. 132

Original Author Paul Laughton, 2011 Page 15 De Re BASIC!

TTS.init .. 132

TTS.speak <sexp> {, <wait_lexp>} ... 133

TTS.speak.toFile <sexp> {, <path_sexp>} .. 133

TTS.stop ... 133

Speech To Text (Voice Recognition) ... 133

STT.listen {<prompt_sexp>} ... 133

STT.results <string_list_ptr_nexp> ... 133

Information About Your Android Device .. 135

Device <svar> .. 135

Device <nexp>|<nvar> ... 135

Phone.info <nexp>|<nvar> .. 136

Screen rotation, size[], realsize[], density ... 137

Screen.rotation <nvar> .. 138

Screen.size, size[], realsize[], density.. 138

WiFi.info {{<SSID_svar>}{, <BSSID_svar>}{, <MAC_svar>}{, <IP_var>}{, <speed_nvar>}} 138

Running in the Background .. 139

Home .. 139

OnBackground: .. 139

Background.resume ... 139

WakeLock <code_nexp> .. 139

WifiLock <code_nexp> ... 140

Miscellaneous Commands ... 140

Headset <state_nvar>, <type_svar>, <mic_nvar> ... 140

Notify <title_sexp>, <subtitle_sexp>, <alert_sexp>, <wait_lexp>.. 141

Pause <ticks_nexp> ... 141

Swap <nvar_a>|<svar_a>, <nvar_b>|<svar_b> .. 142

Tone <frequency_nexp>, <duration_nexp> {, <duration_chk_lexp} .. 142

Vibrate <pattern_array[{<start>,<length>}]>,<nexp> ... 142

VolKeys.. 142

VolKeys.off .. 143

VolKeys.on ... 143

SQLITE ... 143

Original Author Paul Laughton, 2011 Page 16 De Re BASIC!

Overview ... 143

SQLITE Commands ... 143

Sql.open <DB_pointer_nvar>, <DB_name_sexp> ... 143

Sql.close <DB_pointer_nvar> ... 144

Sql.new_table <DB_pointer_nvar>, <table_name_sexp>, C1$, C2$, ...,CN$ 144

Sql.drop_table <DB_pointer_nvar>, <table_name_sexp> ... 144

Sql.insert <DB_pointer_nvar>, <table_name_sexp>, C1$, V1$, C2$, V2$, ..., CN$, VN$ 144

Sql.query <cursor_nvar>, <DB_pointer_nvar>, <table_name_sexp>, <columns_sexp> {,

<where_sexp> {, <order_sexp>} } ... 145

Sql.query.length <length_nvar>, <cursor_nvar> ... 145

Sql.query.position <position_nvar>, <cursor_nvar>.. 145

Sql.next <done_lvar>, <cursor_nvar>{, <cv_svars>} .. 145

Sql.delete <DB_pointer_nvar>, <table_name_sexp>{,<where_sexp>{,<count_nvar>} } 146

Sql.update <DB_pointer_nvar>, <table_name_sexp>, C1$, V1$, C2$, V2$,...,CN$, VN${:

<where_sexp>} .. 146

Sql.exec <DB_pointer_nvar>, <command_sexp> .. 147

Sql.raw_query <cursor_nvar>, <DB_pointer_nvar>, <query_sexp>... 147

Graphics .. 147

Introduction .. 147

The Graphics Screen and Graphics Mode ... 147

Display Lists ... 148

Drawing Coordinates ... 148

Drawing into Bitmaps .. 148

Colors .. 149

Paints .. 149

Style .. 150

Hardware-accelerated Graphics ... 151

Graphics Setup Commands .. 151

Gr.open {{alpha}{, red}{, green}{, blue}{, <ShowStatusBar_lexp>}{, <Orientation_nexp>}} 151

Gr.color {{alpha}{, red}{, green}{, blue}{, style}{, paint}} .. 152

Gr.set.antialias {{<lexp>}{,<paint_nexp>}} .. 153

Gr.set.stroke {{<nexp>}{,<paint_nexp>}} .. 153

Original Author Paul Laughton, 2011 Page 17 De Re BASIC!

Gr.orientation <nexp>.. 153

Gr.statusbar {<height_nvar>} {, showing_lvar} ... 154

Gr.statusbar.show <nexp> ... 154

Gr.render ... 154

Gr.screen width, height{, density } ... 154

Gr.scale x_factor, y_factor ... 155

Gr.cls ... 155

Gr.close ... 155

Gr.front flag ... 155

Gr.brightness <nexp> ... 156

Graphical Object Creation Commands ... 156

Gr.point <obj_nvar>, x, y.. 156

Gr.line <obj_nvar>, x1, y1, x2, y2 ... 156

Gr.rect <ob_nvar>, left, top, right, bottom ... 157

Gr.oval <obj_nvar>, left, top, right, bottom .. 157

Gr.arc <obj_nvar>, left, top, right, bottom, start_angle, sweep_angle, fill_mode 157

Gr.circle <obj_nvar>, x, y, radius .. 157

Gr.set.pixels <obj_nvar>, pixels[{<start>,<length>}] {,x,y} ... 158

Gr.poly <obj_nvar>, list_pointer {,x, y} ... 158

Groups .. 159

Gr.group <object_number_nvar>{, <obj_nexp>}... ... 160

Gr.group.list <object_number_nvar>, <list_ptr_nexp> ... 160

Gr.group.getDL <object_number_nvar> ... 160

Gr.group.newDL <object_number_nvar> ... 160

Hide and Show Commands .. 160

Gr.hide <object_number_nexp> .. 160

Gr.show <object_number_nexp> ... 161

Gr.show.toggle <object_number_nexp> .. 161

Touch Query Commands ... 161

Gr.touch touched, x, y.. 161

Gr.bounded.touch touched, left, top, right, bottom ... 162

Gr.touch2 touched, x, y .. 162

Original Author Paul Laughton, 2011 Page 18 De Re BASIC!

Gr.bounded.touch2 touched, left, top, right, bottom ... 162

OnGrTouch: ... 162

Gr.onGrTouch.resume ... 162

Text Commands ... 162

Overview ... 162

Gr.text.align {{<type_nexp>}{,<paint_nexp>}} .. 163

Gr.text.bold {{<lexp>}{,<paint_nexp>}} ... 163

Gr.text.size {{<size_nexp>}{,<paint_nexp>}} ... 163

Gr.text.skew {{<skew_nexp>}{,<paint_nexp>}} ... 163

Gr.text.strike {{<lexp>}{,<paint_nexp>}} ... 163

Gr.text.underline {{<lexp>}{,<paint_nexp>}} ... 164

Gr.text.setfont {{<font_ptr_nexp>|<font_family_sexp>} {, <style_sexp>} {,<paint_nexp>}} 164

Gr.text.typeface {{<font_nexp>} {, <style_nexp>} {,<paint_nexp>}} .. 165

Gr.text.height {<height_nvar>} {, <up_nvar>} {, <down_nvar>} .. 165

Gr.text.width <nvar>, <exp> .. 166

Gr.get.textbounds <exp>, left, top, right, bottom ... 166

Gr.text.draw <object_number_nvar>, <x_nexp>, <y_nexp>, <text_object_sexp> 167

Bitmap Commands .. 168

Overview ... 168

Gr.bitmap.create <bitmap_ptr_nvar>, width, height .. 168

Gr.bitmap.load <bitmap_ptr_nvar>, <file_name_sexp> ... 168

Gr.bitmap.size <bitmap_ptr_nexp>, width, height ... 169

Gr.bitmap.scale <new_bitmap_ptr_nvar>, <bitmap_ptr_nexp>, width, height {, <smoothing_lexp>}

 .. 169

Gr.bitmap.delete <bitmap_ptr_nexp> .. 169

Gr.bitmap.crop <new_bitmap_ptr_nvar>, <source_bitmap_ptr_nexp>, <x_nexp>, <y_nexp>,

<width_nexp>, <height_nexp> ... 169

Gr.bitmap.save <bitmap_ptr_nvar>, <filename_sexp>{, <quality_nexp>} 170

Gr.bitmap.draw <object_ptr_nvar>, <bitmap_ptr_nexp>, x , y ... 170

Gr.get.bmpixel <bitmap_ptr_nvar>, x, y, alpha, red, green, blue .. 170

Gr.bitmap.fill <bitmap_ptr_nexp>, <x_nexp>, <y_nexp> .. 170

Gr.bitmap.drawinto.start <bitmap_ptr_nexp> ... 170

Original Author Paul Laughton, 2011 Page 19 De Re BASIC!

Gr.bitmap.drawinto.end .. 171

Paint Commands ... 171

Gr.paint.copy {{<src_nexp>}{, <dst_nexp>}} ... 171

Gr.paint.get <object_ptr_nvar>.. 171

Gr.paint.reset {<nexp>} .. 172

Rotate Commands ... 172

Gr.rotate.start angle, x, y{,<obj_nvar>} .. 172

Gr.rotate.end {<obj_nvar>} .. 172

Camera Commands ... 172

Gr.camera.select 1|2 ... 173

Gr.camera.shoot <bm_ptr_nvar> ... 173

Gr.camera.autoshoot <bm_ptr_nvar>{, <flash_ mode_nexp> {, focus_mode_nexp} }................... 174

Gr.camera.manualShoot <bm_ptr_nvar>{, <flash_ mode_nexp> {, focus_mode_nexp} } 174

Other Graphics Commands .. 174

Gr.screen.to_bitmap <bm_ptr_nvar> ... 174

Gr.get.pixel x, y, alpha, red, green, blue ... 175

Gr.save <filename_sexp> {,<quality_nexp>} ... 175

Gr.get.type <object_ptr_nexp>, <type_svar> ... 175

Gr.get.params <object_ptr_nexp>, <param_array$[]> ... 175

Gr.get.position <object_ptr_nexp>, x, y ... 175

Gr.move <object_ptr_nexp> {{, dx}{, dy}} ... 175

Gr.get.value <object_ptr_nexp> {, <tag_sexp>, <value_nvar | value_svar>}... 176

Gr.modify <object_ptr_nexp> {, <tag_sexp>, <value_nexp | value_sexp>}... 176

GR_COLLISION(<object_1_nexp>, <object_2_nexp>) ... 178

Gr.clip <object_ptr_nexp>, <left_nexp>, <top_nexp>, <right_nexp>, <bottom_nexp>{, <RO_nexp>}

 .. 178

Gr.newDL <dl_array[{<start>,<length>}]> ... 179

Gr.getDL <dl_array[]> {, <keep_all_objects_lexp> } .. 179

Audio Interface.. 180

Introduction .. 180

The Audio Interface ... 180

Audio File Types ... 180

Original Author Paul Laughton, 2011 Page 20 De Re BASIC!

Commands .. 180

Audio.load <aft_nvar>, <filename_sexp> ... 180

Audio.play <aft_nexp> ... 180

Audio.stop ... 181

Audio.pause... 181

Audio.loop ... 181

Audio.volume <left_nexp>, <right_nexp> .. 181

Audio.position.current <nvar> ... 181

Audio.position.seek <nexp> ... 181

Audio.length <length_nvar>, <aft_nexp> ... 181

Audio.release <aft_nexp> .. 182

Audio.isdone <lvar> ... 182

Audio.record.start <fn_svar> ... 182

Audio.record.stop .. 182

SoundPool ... 182

Introduction .. 182

Commands .. 183

Soundpool.open <MaxStreams_nexp> ... 183

Soundpool.load <soundID_nvar>, <file_path_sexp> ... 183

Soundpool.unload <soundID_nexp> .. 183

Soundpool.play <streamID_nvar>, <soundID_nexp>, <rightVolume_nexp>, <leftVolume_nexp>,

<priority_nexp>, <loop_nexp>, <rate_nexp> .. 183

Soundpool.setvolume <streamID_nexp>, <leftVolume_nexp>, <rightVolume_nexp> 183

Soundpool.setrate <streamID_nexp>, <rate_nexp> ... 184

Soundpool.setpriority <streamID_nexp>, <priority_nexp> ... 184

Soundpool.pause <streamID_nexp> ... 184

Soundpool.resume <streamID_nexp> .. 184

Soundpool.stop <streamID_nexp> ... 184

Soundpool.release ... 184

GPS ... 184

GPS Control commands ... 184

Gps.open {{<status_nvar>},{<time_nexp>},{<distance_nexp>}} .. 184

Original Author Paul Laughton, 2011 Page 21 De Re BASIC!

Gps.close ... 185

Gps.status {{<status_var>}, {<infix_nvar>},{inview_nvar}, {<sat_list_nexp>}} 185

GPS Location commands.. 187

Gps.location {{<time_nvar>}, {<prov_svar>}, {<count_nvar}, {<acc_nvar>}, {<lat_nvar>},

{<long_nvar>}, {<alt_nvar>}, {<bear_nvar>}, {<speed_nvar>}} .. 188

Gps.time <nvar> .. 188

Gps.provider <svar> ... 188

Gps.satellites {{<count_nvar>}, {<sat_list_nexp>}} ... 188

Gps.accuracy <nvar> .. 189

Gps.latitude <nvar> ... 189

Gps.longitude <nvar> ... 189

Gps.altitude <nvar> ... 189

Gps.bearing <nvar> .. 189

Gps.speed <nvar> .. 189

Sensors.. 189

Introduction .. 189

Sensor Commands ... 190

Sensors.list <sensor_array$[]> ... 190

Sensors.open <type_nexp>{:<delay_nexp>}{, <type_nexp>{:<delay_nexp>}, ...} 190

Sensors.read sensor_type_nexp, p1_nvar, p2_nvar, p3_nvar ... 191

Sensors.close ... 191

System .. 191

System Commands .. 191

System.open .. 191

System.write <sexp> .. 192

System.read.ready <nvar> ... 192

System.read.line <svar> ... 192

System.close .. 192

Superuser Commands .. 192

Su.open ... 192

Su.write <sexp> ... 192

Su.read.ready <nvar> ... 192

Original Author Paul Laughton, 2011 Page 22 De Re BASIC!

Su.read.line <svar> .. 192

Su.close ... 192

App Commands ... 192

App.broadcast <action_sexp>, <data_uri_sexp>, <package_sexp>, <component_sexp>,

<mime_type_sexp>, <categories_sexp>, <extras_bptr_nexp>, <flags_nexp> 192

App.start <action_sexp>, <data_uri_sexp>, <package_sexp>, <component_sexp>,

<mime_type_sexp>, <categories_sexp>, <extras_bptr_nexp>, <flags_nexp> 193

Appendix A – Command List .. 195

Appendix B – Sample Programs ... 206

Appendix C – Launcher Shortcut Tutorial ... 207

Introduction .. 207

How to Make a Shortcut Application (older versions of Android—prior to Android 4.0) 207

How to Make a Shortcut Application (newer versions of Android—Android 4.0 and later) 208

What you need to know .. 209

Appendix D – Building a Standalone Application .. 210

Introduction .. 210

License Information ... 210

Before You Start .. 210

Setting Up the Development Environment ... 210

Download the BASIC! Source Code from the GitHub Repository... 211

Download the BASIC! Source Code from the Legacy Archive .. 211

Create a New Project in Eclipse .. 212

Rename the Package ... 213

In Eclipse ... 213

Other IDEs ... 214

Renaming complete ... 215

Modifications to setup.xml .. 215

Advanced Customization with setup.xml ... 216

Files and Resources ... 218

Testing the APK ... 219

Installing a BASIC! Program into the Application .. 220

Application Icons ... 221

Original Author Paul Laughton, 2011 Page 23 De Re BASIC!

Modifications to the AndroidManifest.xml File .. 222

Setting the Version Number and Version Name ... 223

Permissions ... 223

Disable the Shortcut Launcher ... 223

Launch at device boot .. 224

Preferences ... 225

Finished ... 226

Appendix E – BASIC! Distribution License ... 227

Apache Commons .. 238

Original Author Paul Laughton, 2011 Page 24 De Re BASIC!

Changes in this Version

 Clarifications and additional explanations:

o This document has always been in the Public Domain. Now it says so.

o Added number syntax under "Command Description Syntax" and VAL().

o The Editor Load screen starts in the "source" directory except after a fresh install.

o Added Interrupt Labels section. Standardized description of Interrupt Labels and Resume.

o Moved and regrouped descriptions of some commands.

o Added the run-time errors generated by the math functions.

o Function parameters are variables private to their functions.

o For - Next loops evaluate the loop limit value only once on For, not on each Next.

o Clarified distinction between Array.load and Array.fill.

o Put Gr.color style parameter values in a table.

o Gr.screen too soon after Gr.open or Gr.orientation may return the wrong values.

o Gr.load.bitmap returns -1 for errors other than insufficient memory.

o How Gr.text.height and Gr.get.textbounds are affected by modifying a Paint.

o Clarified Gr.poly list options.

o TTS input size may be limited by your device or speech engine.

o App.start can start another app, but it cannot receive returned results directly.

 Corrected errors:

o Randomize(0) does not initialize from the real-time clock. It’s more random than that.

o Updated list of commands that do not stop the program on an error (see GETERROR$()).

o Headset returns 0, not -1, if no headset, or headset has no microphone.

 New BASIC! functions and commands:

o IS_NUMBER()

o Array.dims

o Screen.rotation and Screen.size.

 Other changes in BASIC!:

o A variable name alone on a line is no longer a valid statement.

o GetError$(): commands that can set an error string without stopping the program clear the error

string if they do not get an error.

o Randomize() with no argument is the same as Randomize(0).

o You may replace a built-in function with a user-defined function.

o Dim can use an existing array name without using UnDim to destroy the existing array.

o Commands that create new arrays can use an existing array name. The new array replaces the

old one, which is destroyed as if by UnDim.

o The "Do not use UnDim in an interrupt" bug was fixed.

o Switches may be nested. A Sw.begin/Sw.end block may be inside a Sw.case/Sw.break block.

o Two extensions to Sw.case: value lists and comparators other than the implied "=".

o Gr.orientation: add reverse orientations (like Screen Orientation Preferences of v01.89).

o Gr.get.type with an invalid object number no longer throws an error. Instead, it returns an empty

type string and writes a message for retrieval with the GETERROR $() function.

o If GrabURL or Grabfile can’t read, they return "" and set a message for GETERROR$().

o Extended Sql.next to allow returning an unknown number of columns in an array.

o Extended Socket.myIP to return multiple IP addresses in a string array.

o Sensors: added sensors introduced in KitKat.

Original Author Paul Laughton, 2011 Page 25 De Re BASIC!

About the Title, De Re BASIC!

"De Re" is Latin for "of the thing" or "about".

About the Cover Art

Thanks to BASIC! collaborator Nicolas Mougin. The images are screenshots from real BASIC! programs

available from the Google Play™ store, or from the excellent collection of shared BASIC! programs

available at http://laughton.com/basic/programs.

You can find more information on the BASIC! user forum at http://rfobasic.freeforums.org/shared-basic-

programs-f6.html.

Credits

Thanks to Paul Laughton, the original creator of BASIC! and of this document.

Mr. Laughton has put this document in the Public Domain.

Thanks also to Mike Leavitt of Lansdowne, VA, USA, for his many contributions and long-time support.

Technical Editor

The current editor of this manual monitors https://github.com/RFO-BASIC/De-Re-Basic/issues and the

BASIC! user forum at http://rfobasic.freeforums.org/suggestions-for-improving-the-manual-f9.html for

corrections and suggestions.

Getting BASIC!

You can get BASIC! for your Android device from the Google Play™ store.

If you prefer to download the installation file (Basic.apk) yourself, or to get a previous version, get it

from Bintray at https://bintray.com/rfo-basic/android/RFO-BASIC/

This manual is also available from Bintray, in PDF format. BASIC! collaborator Nicolas Mougin keeps the

manual in HTML format on his BASIC! website: http://rfo-basic.com/manual. The document source is

available from GitHub at https://github.com/RFO-BASIC/De-Re-Basic.

BASIC! Forum

Join the community of BASIC! users at http://rfobasic.freeforums.org, where you are always welcome.

BASIC! Tutorial

A BASIC! user, Nick Antonaccio, has written a very nice tutorial for BASIC! You can find it at

http://rfobasic.com.

http://laughton.com/basic/programs
http://rfobasic.freeforums.org/shared-basic-programs-f6.html
http://rfobasic.freeforums.org/shared-basic-programs-f6.html
https://github.com/RFO-BASIC/De-Re-Basic/issues
http://rfobasic.freeforums.org/suggestions-for-improving-the-manual-f9.html
https://bintray.com/rfo-basic/android/RFO-BASIC/
http://rfo-basic.com/manual
https://github.com/RFO-BASIC/De-Re-Basic
http://rfobasic.freeforums.org/
http://rfobasic.com/

Original Author Paul Laughton, 2011 Page 26 De Re BASIC!

BASIC! Operation

Permissions

This application requests many permissions, permissions such as sending and receiving SMS messages,

making phone calls, record audio, etc. BASIC! does not exercise any of these permissions (except writing

to the SD card) on its own. These permissions get exercised by the BASIC! programmer, you. You and

only you. You exercise these permissions by means of the programs that you write.

If you write a program that uses the sms.send command then BASIC! will attempt to send an SMS

message. BASIC! must have permission to send SMS messages for this command to work. If you never

use the sms.send command then BASIC! will never send an SMS message. You are in control.

The source code for BASIC! is available from the BASIC! web site (http://laughton.com/basic/) and the

BASIC! GitHub repository (https://github.com/RFO-BASIC/Basic). Please feel free to examine this source

code if you have any doubt about the use of these permissions.

Editor

Editing the Program

The Editor is where BASIC! programs are written and edited. The operation of the Editor is fairly simple.

Tap the screen at the point where you want to edit the program. A cursor will appear. Use the keyboard

to edit at the cursor location.

When the Enter key is tapped, the new line will automatically indent to the indent level of the previous

line. This feature will not work if the Preference, "Editor AutoIndent," is not checked. This feature also

may not work if you are using a software keyboard.

If the program that you are editing has been given a name via Save or Load then that program name will

be shown in the title bar.

Some Android devices are shipped with "Settings/Developer Option/Destroy Activities" checked and/or

"Settings/Energy/Quick Restart" checked. Both of these setting create problems with loading files into

the Editor. It appears as if you have gone through the process of loading the file but nothing appears in

the editor. The solution to the problem is to uncheck both of these options. Even better, completely

turn off Developer Options unless you know that you have a legitimate development need.

If your Android device does not have a physical keyboard, you will see a virtual keyboard. If you see the

virtual keyboard, then you will see different things depending upon the way you are holding the device.

If the device is in landscape mode then you will see a dialog box with a chunk of the program in a small

text input area. You can scroll the small chunk of text up and down in this area but you will not be able

to see very much of the program at any one time. It is probably best not to try to edit a program in

landscape mode; hold your device in portrait mode while editing.

http://laughton.com/basic/
https://github.com/RFO-BASIC/Basic

Original Author Paul Laughton, 2011 Page 27 De Re BASIC!

On some devices, if you do a long touch on the screen, a dialog box will appear. You can use the

selections in the box for selecting, copying, cutting and pasting of text, among other things. Other

devices have different procedures for invoking the cut and paste functions.

Multiple Commands on a Line

More than one BASIC! source code statement may be written on one physical line. Separate commands

with a colon character ":".

For example, the following line uses three separate commands to initialize some variables:

name$="BASIC!" : ver=1.86 : array.load reviews$[], "Great!", "Wow!", "Fantastic!"

Note: two commands, Sensors.open and SQL.update, use the colon as a sub-parameter separator. If

you use multiple-command lines, be careful when using these two commands.

Line Continuation

A BASIC! source code statement may be written on more than one physical line using the line

continuation character "~". If "~" is the last thing on a line, except for optional spaces, tabs, or a '%'

comment, the line will be merged with the next line. This behavior is slightly different in the Array.load

and List.add commands; see the descriptions of those commands for details.

Note: this operation is implemented by a pre-processor that merges the source code lines with

continuation characters before the source code is executed. If you have a syntax error in the merged

line, it will show as one line in the error message, but it will still be multiple lines in the editor. Only the

first physical line will be highlighted, regardless of which line the error is in.

For example, the code line:

s$ = "The quick brown fox " + verb$ + " over " + count$ + " lazy dogs"

could be written as:

s$ = "The quick brown fox " +~

 verb$ + ~ % what the fox did

 " over " + ~

 count$ + ~ % how many lazy dogs

 " lazy dogs"

- Format Line

If a line has the # character at the end of the line, the keywords in that line will be capitalized and the #

will be removed.

This feature may not work if you are using a virtual keyboard.

This feature will not work if the Preference option "Editor AutoIndent" is not checked.

Original Author Paul Laughton, 2011 Page 28 De Re BASIC!

Menus

Press the MENU key or touch the Menu icon to access the following menus. On some versions of

Android, you will not see all of the menu options. Instead, you will see the first five options and a More

options. Select the More option to see all of the options listed.

Run

Run the current program.

If the program has been changed since it was last saved, you will be given an opportunity to save the

program before the run is started.

If a run-time error occurs then the offending line will be shown as selected in the editor.

Load

Load a program file into the editor. The first time you open BASIC! after installing it, if you select Load it

displays the sample programs in the directory rfo-basic/source/Sample_Programs. (See Paths

Explained, later in this manual.) Otherwise, when you open BASIC! and select Load it starts in the

default source directory rfo-basic/source. Program files must have the extension .bas.

BASIC! checks to see if the current program in the Editor has been changed when Load is tapped. You

will be offered the opportunity to save the program if it has been changed. If you choose to save the

program, Load will restart after the save is done.

The "BASIC! Load File" screen shows the path to your current directory followed by sorted lists of the

subdirectories and program files in it. Directories are denoted by the (d) appended to the name. BASIC!

programs are shown with the .bas extension. If there are files in the directory that do not have the .bas

extension, they do not appear in the list.

Tap on a .bas file to load it into the Editor.

You can navigate to any directory on your device for which you have read permission.
 Tap on a directory to display its contents.

 Tap on the ".." at the top of list to move up one directory level. The tap has no effect if the

current directory is the device root directory "/".

You can exit the Load option without loading a program by tapping the BACK key.

BASIC! remembers the path to the directory you are in when you load a program. Next time you select

Load, it starts in that directory. If you select Save or Save and Run, the file is saved in the remembered

directory (unless it is Sample_Programs).

Save

Saves the program currently in the editor.

Original Author Paul Laughton, 2011 Page 29 De Re BASIC!

A dialog box displays the path to the directory where you will save the file and an input area where you

can enter the file name. If the current program has a name because it was previously loaded or saved

then that name will be in the text input area. Type in the name you want the file saved as and tap OK.

The extension .bas will be added to file name if is not already there.

If you do not enter a file name, BASIC! uses a default filename, default.bas.

BASIC! remembers the path to the directory you were in when you last loaded or saved a program.

When you Save, the file name you type is saved in the remembered directory. If the name you type

includes subdirectories, BASIC! remembers the new path. The name you type can include "../". Be

careful if you are using a soft keyboard, as it may automatically insert spaces that you don’t want.

You cannot save programs in the sample program directory source/Sample_Programs. If you load a

program from source/Sample_Programs, change it, and Save it, the program is saved in source.

You can exit Save without saving a file by tapping the BACK key.

Clear

Clear the current program in the Editor. You will be offered the opportunity to save the current program

if it has been changed.

Search

Search for strings in the program being edited. Found strings may be replaced with a different string.

The Search view shows a Text Window with the text from the Editor, a Search For field and a Replace

With field.

If there is a block of text currently selected in the Editor, then that text will be placed into the Search For

field.

The initial location of the search cursor will be at the start of the text regardless of where the cursor was

in the Editor text.

Note: The search ignores case. For example, searching for "basic" will find "BASIC" This is because BASIC!

converts the whole program to lower case (except characters within quotes) when the program is run.

NEXT BUTTON

Start the search for the string in the Search For field. The search is started at the current cursor location.

If the string is found then it will be selected in Text Window.

If the Done button is tapped at this point then the Editor will returned to with the found text selected.

If the Replace button is tapped then the selected text will be replaced.

Pressing the Next button again will start a new search starting at the end of the selected or replaced

text.

Original Author Paul Laughton, 2011 Page 30 De Re BASIC!

If no matching text is found then a "string not found" message is shown. Tapping the Done button

returns to the Editor with the cursor at the end of the program. Alternatively, you could change the

Search For text and start a new search.

REPLACE BUTTON

If Next has found and selected some text then that text is replaced by the contents of the Replace With

field.

If no text has been found then the message, "Nothing found to replace" will be shown.

REPLACE ALL BUTTON

All occurrences of the Search For text are replaced with the Replace With text. Replace All always starts

at the start of the text. The last replaced item will be shown selected in the Text Window. The number

of items replaced will be shown in a message.

DONE BUTTON

Returns to the Editor with the changed text. If there is selected text in the Text Window then that text

will be shown selected in the Editor.

BACK KEY

Returns to the Editor with the original text unchanged. All changes made during the Search will be

undone. Think of the BACK key as UNDO ALL.

Load and Run

Selecting this option is exactly the same as first selecting Load and then selecting Run. The selected

program is loaded into the Editor and is run immediately.

Save and Run

Selecting this option is a fast way to save and then run. Any changes you have made are saved,

overwriting your file, and your program is run immediately. A brief popup notifies you that your file has

been changed. If the program you are editing has no name (not previously loaded or saved), the Editor

will ask you what name to use.

Format

Format the program currently in the Editor. The keywords are capitalized. Program lines are indented as

appropriate for the program structure. Left- and right-double quotation marks (“ and ”) are replaced by

simple ASCII quotation marks (").

When copying program text from the Forum or another web site, "non-breaking space" characters,

designated in HTML, may be inserted into the program text. Except when they are enclosed in

quoted strings, Format converts these characters to simple ASCII spaces.

Original Author Paul Laughton, 2011 Page 31 De Re BASIC!

Delete

Delete files and directories. The command should be used for maintaining files and directories that are

used in BASIC! but it can also be used to delete any file or directory on the SD card for which you have

the required permissions. Delete starts in the rfo-basic directory.

Tapping Delete presents the "BASIC! Delete File" screen. The screen shows the path to your current

directory followed by sorted lists of the directories and files in it. Directories are marked with (d)

appended to the name and appear at the top of the list.

Tapping a file name displays the "Confirm Delete" dialog box. Tap the Delete button to delete the file.

Tap the No button to dismiss the dialog box and not delete the file.

Tapping a directory name displays the contents of the directory. If the directory is empty the "Confirm

Delete" dialog box is shown. Tap the Delete button to delete the directory. Tap the No button to dismiss

the dialog box and not delete the directory.

Tap the ".." at the top of the screen to move up one directory level. Tapping the ".." has no effect if you

are in the root directory "/".

Exit Delete by tapping the BACK key.

Preferences

SCREEN COLORS

Opens a sub-menu with options for setting the colors of the various screens in BASIC!

COLOR SCHEME

Sets the color scheme of the screens. The schemes are identified by their appearance with the

default colors. Choose Black text on a White background, White text on a Black background or

White text on a Blue background.

CUSTOM COLORS

Check the box to override the Color Scheme setting, allowing you to set your own colors. You

can set the Text (foreground) Color, the Background Color, the Line Color, and the Highlight

Color. Each color is specified as a single number with 16 hexadecimal digits: four fields of four

digits each for Alpha (opacity), Red, Green, and Blue components.

CONSOLE SETTINGS

Opens a sub-menu with options for settings of the Console and various others screens in BASIC!

FONT SIZE

Sets the font size (Small, Medium, or Large) to be used with the various screens in BASIC!.

TYPEFACE

Choose the typeface to be used on the Output Console and some other screens:

Monospace, Sans Serif, or Serif.

Original Author Paul Laughton, 2011 Page 32 De Re BASIC!

CONSOLE MENU

Check the box if the Menu should be visible in the Output Console and TGet screen.

CONSOLE LINES

Check the box if the text lines in the Output Console should be underlined.

EMPTY CONSOLE COLOR

Choose the background color of the part of the Output Console that has not yet been written. It

can match the background color of the text or the color of the lines separating text lines.

This setting also applies to the Select (but not Dialog.select) command.

EDITOR SETTINGS

Opens a sub-menu with options for setting properties and features of the Program Editor.

EDITOR LINES

Check the box if the text lines in the Editor should be underlined.

EDITOR LINE WRAP

Check the box if long text lines in the Editor should wrap at the edge of the screen. If unchecked,

long lines are not wrapped, and the Editor screen may be scrolled horizontally.

EDITOR AUTOINDENT

Check the box if you want the Editor to do auto indentation. Enabling auto indentation also

enables the formatting of a line that ends with the "#" character.

Some devices are not able to do auto indenting properly. In some of those devices the

AutoIndent feature may cause the Editor to be unusable. If that happens, turn off AutoIndent.

MENU ITEMS ON ACTION BAR

Opens a sub-menu with options for moving some of the Editor menu items to the Action Bar, if there is

room for them there. You can select as many as you like, but the number of items moved depends on

the device and orientation. These options have no effect on Android devices before Honeycomb (3.0).

RUN ON ACTION BAR

If checked, Android will attempt to move the RUN item from the Editor Menu to the Action Bar.

LOAD ON ACTION BAR

If checked, Android will attempt to move the LOAD item from the Editor Menu to the Action Bar.

SAVE ON ACTION BAR

If checked, Android will attempt to move the SAVE item from the Editor Menu to the Action Bar.

EXIT ON ACTION BAR

If checked, Android will attempt to move the EXIT item from the Editor Menu to the Action Bar.

Original Author Paul Laughton, 2011 Page 33 De Re BASIC!

SCREEN ORIENTATION

Choose to allow the Sensors to determine the orientation of the screens or to set a fixed orientation

without regard to the Sensors.

Note: The reverse orientations apply to Android 2.3 or newer.

GRAPHIC ACCELERATION

Check this box to enable GPU-assisted graphics acceleration on devices since 3.0 (Honeycomb) that

support it. It is disabled by default. If you enable this option, test your program carefully. Hardware

acceleration can make some of BASIC!’s graphical operations fail.

BASE DRIVE

Some Android devices have several external storage devices (and some have no physical external

storage devices). BASIC! will use the system-suggested device as its base drive. The base drive is the

device where the BASIC! "rfo-basic" directory (base directory) is located. The base directory is where

BASIC!’s programs and data are stored. (See "Paths Explained", later in this manual.)

If your device does have more than one external storage device they will be listed here. If your device

has no external storage devices, your one and only choice will be "No external storage". Tap the device

you want to use as the base drive and press the BACK key. You will then be given the choice of either

immediately restarting BASIC! with the new base drive or waiting and doing the restart yourself.

In this manual, <pref base drive> means the base drive you selected when you set the Base Drive here.

In many devices, the system-suggested drive is "/sdcard".

Note: If you have created a Launcher Shortcut (see Appendix C) with files in one base directory but try to

execute that shortcut while using a different base directory, the shortcut will fail to execute. You will get

an error message.

Commands

The Commands command presents the list of the BASIC! commands and functions as copied from

Appendix A of this document.

Tapping an alpha key will cause the command list to scroll to commands that start with that character.

There will be no scrolling if there is no command that starts with that character.

Note: You can hide the virtual keyboard with the BACK key. If you do that, you will not be able to get it

back until you invoke the Commands option again.

Tapping on a particular command causes that command to be copied to the clipboard (not including the

page number) and returning to the Editor. You can then paste the command into your BASIC! program.

About

The About option displays the Bintray page for the release of BASIC! that corresponds to the release of

the BASIC! that you are using. Make sure that you have a connection to the Internet before selecting

About.

Original Author Paul Laughton, 2011 Page 34 De Re BASIC!

Exit

The only way to cleanly exit BASIC! is to use the Exit option.

Pressing the HOME key while in BASIC! leaves BASIC! in exactly the same state it was in when the HOME

key was tapped. If a program was running, it will still be running when BASIC! is re-entered. If you were

in the process of deleting, the Delete screen will be shown when BASIC! is re-entered.

Run

Selecting Run from the Editor’s menu starts the program running. However, if the source in the Editor

has been changed, then the Save dialog will be displayed. You may choose to save the changed source

or continue without saving.

The BASIC! Output Console will be presented as soon as the program starts to run. You will not see

anything on this screen unless one of the following situations occur:

 the program prints something

 the END statement is executed

 you are in Echo mode

 there is a run-time error

If the program does not print anything then the only indication you would get that the program has

finished is if the program ends with an End statement.

If the program does not contain any executable statements then the message, "Nothing to execute" will

be displayed.

Tapping the BACK key will stop a running program. Tapping the BACK key when the program run has

ended will restart the Editor.

If the program ended with a run-time error, the line where the error occurred will be shown selected in

the Editor. If the error occurred in an INCLUDE file then the INCLUDE statement will be shown selected.

The Editor cursor will remain where it was when the Run was started if no run-time error occurred.

Menu

Pressing the MENU key or touching the Menu icon while a program is running or after the program is

stopped will cause the Run Menu to be displayed. (Except when Graphics is running. See the Graphics

section for details.)

Stop

If a program is running, the Stop menu item will be enabled. Tapping Stop will stop the running

program. Stop will not be enabled if a program is not running.

Original Author Paul Laughton, 2011 Page 35 De Re BASIC!

Editor

Editor will not be enabled if a program is running. If the program has stopped and Editor is thus enabled

then selecting Editor will cause the Editor to be re-entered. You could also use the BACK key to do this.

Crashes

BASIC! is a very large and complex program that is constantly under development. From time to time, it

will crash. Previous versions of BASIC! supported automatic crash reporting. This feature has been

temporarily disabled while we work on an implementation that is more compatible with Android

versions 4.2 and later. We apologize for the inconvenience.

A BASIC! Program

A BASIC! program is made up of lines of text. With a few exceptions that will be explained later, each

line of text is one or more statements. If a line has more than one statement they are separated by

colon (":") characters.

A statement always consists of a single command, usually followed by one or more parameters that are

separated by commas. Here is a simple BASIC! program:

PRINT "Hello, World!"

This program has one statement. The command is PRINT. It has one parameter, the string constant

"Hello, World!". (A string constant, or string literal, is a set of characters enclosed in double quotation

marks. This, too, will be explained later.)

If you start the BASIC! app, so you are in the Editor, you can type in this one-line program. Then you can

select Run from the Editor’s menu. BASIC! will run your program. When the program is done running,

you see the Console, BASIC!’s, output screen, with Hello, World! printed at the top.

Command Description Syntax

Upper and Lower Case

Commands are described using both upper and lower case for ease of reading. BASIC! converts every

character (except those between double quotation marks) to lower case when the program is run.

<nexp>, <sexp> and <lexp>

These notations denote a numeric expression (<nexp>), a string expression (<sexp>), and a logical

expression (<lexp>). An expression can be a variable, a number, a quoted string or a full expression such

as (a*x^2 + bx + c).

Original Author Paul Laughton, 2011 Page 36 De Re BASIC!

<nvar>, <svar> and <lvar>

This notation is used when a variable, not an expression, must be used in the command. Arrays with

indices (such as n[1,2] or s$[3,4]) are considered to be the same as <nvar>, <svar> and <lvar>.

Array[] and Array$[]

This notation implies that an array name without indices must be used.

Array[{<start>,<length>}] and Array$[{<start>,<length>}]

In most contexts, numeric expressions inside the brackets are indices specifying a single array element.

In some commands, a pair of numeric expressions specifies a segment of the array. Both the start index

and length are numeric expressions, and both are optional. This notation is shorthand for:

Array [{ {<start_nexp>} {, <length_nexp>} }]

Array$ [{ {<start_nexp>} {, <length_nexp>} }]

{something}

Indicates something optional.

{ A | B |C }

This notation suggests that a choice of either A, B, or C, must be made. For example:

Text.open {r|w|a}, fn…

Indicate that either "r" or "w" or "a" must be chosen:

Text.open r, fn…

Text.open w, fn…

Text.open a, fn…

X, ...

Indicates a variable-sized list of items separated by commas. At least one item is required.

{,n} ...

Indicates an optional list with zero or more items separated by commas.

<statement>

Indicate an executable BASIC! statement. A <statement> is usually a line of code but may occur within

other commands such as: IF <lexp> THEN <statement>.

Optional Parameters

Many statements have optional parameters. If an optional parameter is omitted, the statement assumes

a default value or performs a default action.

Original Author Paul Laughton, 2011 Page 37 De Re BASIC!

If an optional parameter is omitted, use a comma to mark its place, so following parameters are handled

correctly. However, if there are no following parameters, omit the comma, too. With a few special

exceptions (like Print), no statement can end with a comma.

Numbers

You can type decimal numbers in a BASIC! program:
 A leading sign ("+" or "-"), a decimal point ("." only), and an exponent (power of 10) are optional.

 An exponent is "e" or "E" followed by a number. The number may have a sign but no decimal point.

If you use a decimal point, it MUST follow a digit. 0.15 is a valid number, but .15 is a syntax error.

Numbers in BASIC! are double-precision floating point (64-bit IEEE 754). This means:

 A printed number will always have decimal point. For example, 99 will print as "99.0".You can print

numbers without decimal points by using the INT$() or FORMAT$() functions. For example, either

INT$(99) or FORMAT$("##", 99) will print "99".

 A number with more than 7 significant digits will be printed in floating point format. For example,

the number 12345678 will be printed as 1.2345678E7. INT$() or FORMAT$() can be used to print

large numbers in other than floating point format.

 Mathematical operations on decimal values are imprecise. If you are working with currency you

should multiply the number by 100 until you need to print it out. When you print it, divide by 100.

A logical value (false = 0, true <> 0) is a kind of number.

You can use string functions to convert numbers to strings. STR$(), INT$(), HEX$() and a few others do

simple conversions. FORMAT$() and USING$() can do more complex formatting.

For the purposes of this documentation, numbers that appear in a BASIC! program are called Numeric

Constants.

Strings

Strings in BASIC! are written as any set of characters enclosed in quote (") characters. The quote

characters are not part of the string. For example, "This is a string" is a string of 16 characters.

To include the quote character in a string, you must escape it with a backslash: \". For example:

Print "His name is \"Jimbo\" Jim Giudice."

prints: His name is "Jimbo" Jim Giudice.

Newline characters (a CR/LF, or carriage return/line feed, combination) may be inserted into a string

with the escape sequence \n:

Print "Jim\nGiudice"

Original Author Paul Laughton, 2011 Page 38 De Re BASIC!

prints:

Jim

Giudice

You can use another escape sequence, \t, to put a TAB character into a string. To embed a backslash,

escape it with another backslash: \\. Other special characters can be inserted using the CHR$() function.

Strings with numerical characters can be converted to BASIC! numbers using the VAL(<sexp>) function.

For the purposes of this documentation, strings that appear within a BASIC! program are called String

Constants.

Variables

A BASIC! variable is a container for some numeric or string value.

Variable Names

Variable names must start with the characters "a" through "z", "#", "@", or "_". The remaining

characters in the variable name may also include the digits, "0" through "9".

A variable name may be as long as needed.

Upper case characters can be used in variable names but they will be converted to lower case characters

when the program is run. The variable name "gLoP" is the same as the name "glop" to BASIC!

BASIC! command keywords should not be used to start the name of a variable. For example, Donut = 5 is

interpreted as Do Nut=5. BASIC! thus expects this Do statement to be followed by an Until statement

somewhere before the program ends. A list of BASIC! commands can be found in Appendix A.

BASIC! statement labels and the names of user-defined functions, both described later in this manual,

follow the same naming rules as BASIC! variables.

Variable Types

There are two types of variables: Variables that hold numbers and variables that hold strings. Variables

that hold strings end with the character "$". Variables that hold numbers do not end in "$".

Age, amount and height are all numeric variable names.

First_Name$, Street$ and A$ are all string variable names.

If you use a numeric variable without assigning it a value, it has the value 0.0. If you use a string variable

without assigning it a value, its value is the empty string, "".

Original Author Paul Laughton, 2011 Page 39 De Re BASIC!

Scalar and Array Variables

There are two classes of variables: Scalars and Arrays.

Scalars

A scalar is a variable that can hold only one value. When a scalar is created it is assigned a default value.

Numeric scalars are initialized to 0.0. String scalars are initialized to an empty, zero-length string, "".

You create a scalar variable just by using its name. You do not need to predeclare scalars.

Arrays

An array is variable that can hold many values organized in a systematically arranged way. The simplest

array is the linear array. It can be thought of as a list of values. The array A[index] is a linear array. It can

hold values that can accessed as A[1], A[2],...,A[n]. The number (variable or constant) inside the square

brackets is called the index.

If you wanted to keep a list of ten animals, you could use an array called Animals$[] that can be accessed

with an index of 1 to 10. For example: Animals$[5] = "Cat"

Arrays can have more than one index or dimension. An array with two dimensions can be thought of as

a list of lists. Let’s assume that we wanted to assign a list of three traits to every animal in the list of

animals. Such a list for a "Cat" might be "Purrs", "Has four legs" and "Has Tail". We could set up the

Traits array to have two dimensions such that Traits$[5,2] = "Has four legs". If someone asked what are

the traits of cat, search Animals$[index] until "Cat" is found at index =5. Index=5 can then be used to

access Traits[index,[{1|2|3}].

BASIC! arrays can have any number of dimensions of any size.

BASIC! arrays are "one-based". This means that the first element of an array has an index of "1".

Attempting to access an array with an index of "0" (or less than 0) will generate a run-time error.

Before an array can be used, it must be dimensioned using the DIM command. The DIM command tells

BASIC! how many indices are going to be used and the sizes of the indices. Some BASIC! Commands

automatically create a one-dimensional array. Auto-dimensioned array details will be seen in the

description of those commands.

Note: It is recommended that the List commands (see below) be used in place of one-dimensional

arrays. The List commands provide more versatility than the Array commands.

Array Segments

Some BASIC! Commands take an array as an input parameter. If the array is specified with nothing in the

brackets (for example, "Animals$[]"), then the command reads the entire array.

Most of these commands allow you to limit their operation to a segment of the array, using the notation

"Array[start, length]", where both "start" and "length" are numeric expressions.

Original Author Paul Laughton, 2011 Page 40 De Re BASIC!

For example, you can write "Animals$[2,3]". Usually that means "the animal at row 2 and column 3 of a

two dimensional array called Animals$". When used to specify an array segment, it has a different

meaning: "read only the segment of the Animals$ array that starts at index 2 and includes 3 items".

Notice that this notation applies only to one-dimensional arrays. In fact, it treats all arrays as one-

dimensional, regardless of how they are declared.

Both of the expressions in the "[start, length]" pair are optional. If the "start" value is omitted, the

default starting index is 1. If the "length" value is omitted, the default is the length from the starting

index to the end of the array. If both are omitted, the default is to use the entire array.

Array Commands

These commands all operate on Arrays. Commands operate on both numeric and string arrays, unless

otherwise indicated.

Dim Array[<nexp>{, <nexp> } ...] {, Array[<nexp>{, <nexp> } ...] } ...

The Dim command tells BASIC! how many dimensions an array will have and how big those dimensions

are. BASIC! creates the array, reserving and initializing memory for the array data. All elements of a

numeric array are initialized to the value 0.0. String array elements are initialized to the empty string, "".

If you Dim an array that already exists, the existing array is destroyed and a new one created.

Multiple arrays can be dimensioned with one Dim statement. String and numeric arrays can be

dimensioned in a single Dim command.

Examples:
DIM A[15]

DIM B$[2,6,8], C[3,1,7,3], D[8]

UnDim Array[]{, Array[] } ...

Un-dimensions an array. The array is destroyed, releasing all of the memory it used. Multiple arrays can

be destroyed with one UnDim statement. Each Array[] is specified without any index. This command is

exactly the same as Array.delete.

Array.average <Average_nvar>, Array[{<start>,<length>}]

Finds the average of the values in a numeric array (Array[]) or array segment (Array[start,length]), and

places the result into <Average_nvar>.

Array.copy SourceArray[{<start>,<length>}], DestinationArray[{{-}<extras>}]

The previously Dimensioned or Loaded SourceArray[] will be copied to the DestinationArray[]. If the

Destination Array does not exist, a new array is created. If the Destination Array already exists, some or

all of the existing array will be overwritten. The arrays may be either numeric or string arrays but they

must both be of the same type.

You may copy an entire array (SourceArray[]) or an array segment (SourceArray[start,length]).

Original Author Paul Laughton, 2011 Page 41 De Re BASIC!

If <start> is <= 1 or <start> is not present then the copy will begin with the first element of the

SourceArray. If <length> is not present or if <start>+<length> exceeds the number of elements in the

SourceArray then the entire array or segment from <start> to the end of the array will be copied.

If the Destination Array does not exist, the optional <extras> parameter specifies that <extras> empty

elements are to be added to the new Destination Array before or after the copy. These elements will be

added to the start of the array if the optional minus(-) sign is present. If minus is not present then these

elements will be added to end of the array.

The extra elements for a new numeric array will be initialized to zero. The extra elements for a new

string array will be the empty string, "".

If the Destination Array already exists, the optional <extras> parameter specifies a starting index into the

Destination Array. If the remaining length of the Destination Array starting at the <extras> index is less

than the number of elements to be copied from the Source Array, anything that would not fit is not

copied.

See the Sample Program file, f26_array_copy.bas, for working examples of this command.

Array.delete Array[]{, Array[]} ...

Does the same thing as UnDim Array[].

Array.dims Source[]{, {Dims[]}{, NumDims}}

Provides information about the dimensions of the Source[] array parameter. The Source[] parameter

may be a numeric or string array name with nothing in the brackets ("[]"). The array must already exist.

The Source[] parameter is required, and both of the other parameters are optional.

The dimensions of the Source[] array are written to the Dims[] array, if you provide one. The Dims[]

parameter must be a numeric array name with nothing in the brackets ("[]"). If the Dims[] array exists, it

is overwritten. Otherwise a new array is created. The result is always a one-dimensional array.

The number of dimensions of the Source[] array is written to the NumDims parameter, if you provide

one. NumDims must be a numeric variable. This value is the length of the Dims[] array.

Array.fill Array[{<start>,<length>}], <exp>

Fills an existing array or array segment with a value. The types of the array and value must match.

Array.length <length_nvar>, Array[{<start>,<length>}]

Places the number of elements in an entire array (Array[] or Array$[]) or an array segment

(Array[start,length] or Array$[start,length]) into <Length_nvar>.

Array.load Array[], <exp>, ...

Creates a new array, evaluates the list of expressions "<exp>, ...", and loads values into the new array.

Specify the array name with no index(es). The array has one dimension; its size is the same as the

number of expressions in the list. If the named array already exists, it is overwritten.

Original Author Paul Laughton, 2011 Page 42 De Re BASIC!

The array may be numeric (Array[]) or string (Array$[]), and the expressions must be the same type as

the array.

The list of expressions may be continued onto the next line by ending the line with the "~" character.

The "~" character may be used between <exp> parameters, where a comma would normally appear.

The "~" itself separates the parameters; the comma is optional.

The "~" character may not be used to split a parameter across multiple lines.

Examples:

Array.load Numbers[], 2, 4, 8 , n^2, 32

Array.load Hours[], 3, 4,7,0, 99, 3, 66~ % comma not required before ~

37, 66, 43, 83,~ % comma is allowed before ~

83, n*5, q/2 +j

Array.load Letters$[], "a", "b","c",d$,"e"

Array.max <Max_nvar> Array[{<start>,<length>}]

Finds the maximum value in a numeric array (Array[]) or array segment (Array[start,length]), and places

the result into the numeric variable <max_nvar>.

Array.min <Min_nvar>, Array[{<start>,<length>}]

Finds the minimum value in a numeric array (Array[]) or array segment (Array[start,length]), and places

the result into the numeric variable <min_nvar>.

Array.reverse Array[{<start>,<length>}]

Reverses the order of values in a numeric or string array (Array[] or Array$[]) or array segement

(Array[start,length] or Array$[start,length]).

Array.search Array[{<start>,<length>}], <value_exp>, <result_nvar>{,<start_nexp>}

Searches in the numeric or string array (Array[] or Array$[]) or array segment (Array[start,length] or

Array$[start,length]) for the specified numeric or string value, which may be an expression. If the value

is found in the array, its position will be returned in the result numeric variable <result_nvar>. If the

value is not found the result will be zero.

If the optional start expression parameter is present, the search will start at the specified element. The

default value is 1.

Array.shuffle Array[{<start>,<length>}]}

Randomly shuffles the values of the specified array (Array[] or Array$[]) or array segment

(Array[start,length] or Array$[start,length]).

Array.sort Array[{<start>,<length>}]}

Sorts the values of the specified array (Array[] or Array$[]) or array segment (Array[start,length] or

Array$[start,length]) in ascending order.

Original Author Paul Laughton, 2011 Page 43 De Re BASIC!

Array.std_dev <sd_nvar>, Array[{<start>,<length>}]}

Finds the standard deviation of the values in a numeric array (Array[]) or array segment

(Array[start,length]), and places the result into the numeric variable <sd_nvar>.

Array.sum <sum_nvar>, Array[{<start>,<length>}]

Finds the sum of the values in a numeric array (Array[]) or array segment (Array[start,length]), and then

places the result into the numeric variable <sum_nvar>.

Array.variance <v_nvar>, Array[{<start>,<length>}]

Finds the variance of the values in a numeric array (Array[]) or array segment (Array[start,length]), and

places the result into the numeric variable <v_nvar>.

Data Structures and Pointers in BASIC!

BASIC! offers commands that facilitate working with Data Structures in ways that are not possible with

traditional Basic implementations. These commands provide for the implementation of Lists, Bundles,

Stacks and Queues.

What is a Pointer

The central concept behind the implementation of these commands (and many other BASIC!

commands) is the pointer. A pointer is a numeric value that is an index into a list or table of things.

Do not confuse the pointer with the thing it points to. A pointer to a List is not a List; a pointer to a

bitmap is not a bitmap. A pointer is just a number that represents something else.

As an example of pointers think of a file cabinet drawer with folders in it. That file cabinet is maintained

by your administrative assistant. You never see the file drawer itself. In the course of your work you will

create a new folder into which you put some information. You then give the folder to your assistant to

be place into the drawer. The assistant puts a unique number on the folder and gives you a slip of paper

with that unique number on it. You can later retrieve that folder by asking your assistant to bring you

the folder with that particular number on it.

In BASIC! you create an information object (folder). You then give that information object to BASIC! to

put into a virtual drawer. BASIC! will give you a unique number—a pointer—for that information object.

You then use that pointer to retrieve that particular information object.

Continuing with the folder analogy, let’s assume that you have folders that contain information about

customers. This information could be things such as name, address and phone number. The number that

your assistant will give you when filing the folder will become the customer’s customer number. You can

retrieve this information about any customer by asking the assistant to bring you the folder with the

unique customer number. In BASIC! you would use a Bundle to create that customer information object

(folder). The pointer that BASIC! returns when you create the customer Bundle becomes the customer

number.

Original Author Paul Laughton, 2011 Page 44 De Re BASIC!

Now let’s assume that a customer orders something. You will want to create a Bundle that contains all

the order information. Such bundles are used by the order fulfillment department, the billing

department and perhaps even the marketing department (to SPAM the customer about similar

products). Each Bundle could contain the item ordered, the price, etc. The Bundle will also need to

contain information about the customer. Rather than replicate the customer information you will just

create a customer number field that contains the customer number (pointer). The pointer that gets

returned when you create the order bundle becomes the Order Number. You can create different lists of

bundles for use by different departments.

It would also be nice to have a list of all orders made by a customer in the customer Bundle. You would

do this by creating a List of all order numbers for that customer. When you create the customer bundle,

you would ask BASIC! to create an empty List. BASIC! will return a pointer to this empty List. You would

then place this pointer into the customer record. Later when the customer places an order, you will

retrieve that list pointer and add the order number to the List.

You may also want to create several other Lists of order Bundles for other purposes. You may, for

example, have one List of orders to be filled, another List of filled orders, another List of returned

orders, another List for billing, etc. All of these Lists would simply be lists of order numbers. Each order

number would point to the order Bundle which would point to the Customer Bundle.

If you were to actually create such a database in BASIC!, you would probably want to save all these

Bundles and Lists onto external storage. Getting that information from the internal data structures to

external storage is an exercise left to the user for now.

There are things besides List, Bundle, and Stack data structures that are accessed through pointers.

These include bitmaps and graphical objects, described below in the Graphics section, audio clips,

described in SoundPool, and other things.

Lists

A List is similar to a single-dimension array. The difference is in the way a List is built and used. An array

must be dimensioned before being used. The number of elements to be placed in the array must be

predetermined. A List starts out empty and grows as needed. Elements can be removed, replaced and

inserted anywhere within the list.

There is no fixed limit on the size or number of lists. You are limited only by the memory of your device.

Another important difference is that a List is not a variable type. A numeric pointer is returned when a

list is created. All further access to the List is by means of that numeric pointer. One implication of this is

that it is easy to make a List of Lists. A List of Lists is nothing more than a numeric list containing numeric

pointers to other lists.

Lists may be copied into new Arrays. Arrays may be added to Lists.

All of the List commands are demonstrated in the Sample Program file, f27_list.bas.

Original Author Paul Laughton, 2011 Page 45 De Re BASIC!

List Commands

List.create N|S, <pointer_nvar>

Creates a new, empty list of the type specified by the N or S parameter. A list of strings will be created if

the parameter is S. A list of numbers will be created if the parameter is N. Do not put quotation marks

around the N or S.

The pointer to the new list will be returned in the <pointer_nvar> variable.

The newly created list is empty. The size returned for a newly created list is zero.

List.add <pointer_nexp>{, <exp>}...

Adds the values of the expressions <exp>... to specified list. The expressions must all be the same type

(numeric or string) as the list.

The list of <exp>s may be continued onto the next line by ending the line with the "~" character. The "~"

character may be used between <exp> parameters, where a comma would normally appear. The "~"

itself separates the parameters; the comma is optional.

The "~" character may not be used to split a parameter across multiple lines.

Examples:

List.add Nlist, 2, 4, 8 , n^2, 32

List.add Hours, 3, 4,7,0, 99, 3, 66~ % comma not required before ~

37, 66, 43, 83,~ % comma is allowed before ~

83, n*5, q/2 +j

List.add Name~

"Bill", "Jones"~

"James", "Barnes"~

"Jill", "Hanson"

List.add.list <destination_list_pointer_nexp>, <source_list_pointer_nexp>

Appends the elements in the source list to the end of the destination list.

The two lists must be of the same type (string or numeric).

List.add.array <list_pointer_nexp>, Array[{<start>,<length>}]

Appends the elements of the specified array (Array[]) or array segment (Array[start,length]) to the end

of the specified list.

The Array type must be the same as the list type (string or numeric).

Original Author Paul Laughton, 2011 Page 46 De Re BASIC!

List.replace <pointer_nexp>, <index_nexp>, <sexp>|<nexp>

The List element specified by <index_nexp> in the list pointed to by <pointer_nexp> is replaced by the

value of the string or numeric expression.

The index is one-based. The first element of the list is 1.

The replacement expression type (string or numeric) must match the list type.

List.insert <pointer_nexp>, <index_nexp>, <sexp>|<nexp>

Inserts the <sexp> or <nexp> value into the list pointed to by <pointer_nexp> at the index point

<index_nexp>. If the index point is one more than the current size of the list, the new item is added at

the end of the list.

The index is ones based. The first element of the list is 1.

The inserted element type must match the list type (string or numeric).

List.remove <pointer_nexp>,<index_nexp>

Removes the list element specified by <index_nexp> from the list pointed to by <pointer_nexp>.

The index is ones based. The first element of the list is 1.

List.get <pointer_nexp>, <index_nexp>, <var>

The list element specified by <index_nexp> in the list pointed to by <pointer_nexp> is returned in the

specified string or numeric variable <var>.

The index is one-based. The first element of the list is 1.

The return element variable type must match the list type (string or numeric).

List.type <pointer_nexp>, <svar>

The type of list pointed to by the list pointer is returned in the string variable <svar>.
 Returns the upper case character "S" if the list is a list of strings.

 Returns the upper case character "N" if the list is a list of numbers.

List.size <pointer_nexp>, <nvar>

The size of the list pointed to by the list pointer is returned in the numeric variable <nvar>.

List.clear <pointer_nexp>

Clears the list pointed to by the list pointer and sets the list’s size to zero.

List.search <pointer_nexp>, value|value$, <result_nvar>{,<start_nexp>}

Searches the specified list for the specified string or numeric value. The position of the first (left-most)

occurrence is returned in the numeric variable <result_nvar>. If the value is not found in the list then the

result is zero.

Original Author Paul Laughton, 2011 Page 47 De Re BASIC!

If the optional start expression parameter is present, the search starts at the specified element. The

default start position is 1.

List.toArray <pointer_nexp>, Array$[] | Array[]

Copies the list pointed to by the list pointer into an array. The array type (string or numeric) must be the

same as the list type. If the array exists, it is overwritten, otherwise a new array is created. The result is

always a one-dimensional array.

Bundles

A Bundle is a group of values collected together into a single object. A bundle object may contain any

number of string and numeric values. There is no fixed limit on the size or number of bundles. You are

limited only by the memory of your device.

The values are set and accessed by keys. A key is string that identifies the value. For example, a bundle

might contain a person’s first name and last name. The keys for accessing those name strings could be

"first_name" and "last_name". An age numeric value could also be placed in the Bundle using an "age"

key.

A new, empty bundle is created by using the Bundle.create command. The command returns a pointer

to the empty bundle. Because the bundle is represented by a pointer, bundles can be placed in lists and

arrays. Bundles can also be contained in other bundles. This means that the combination of lists and

bundles can be used to create arbitrarily complex data structures.

After a bundle is created, keys and values can be added to the bundle using the Bundle.put command.

Those values can be retrieved using the keys in the Bundle.get command. There are other bundle

commands to facilitate the use of bundles.

Bundle Auto-Create

Every bundle command except Bundle.create has a parameter, the <pointer_nexp>, which can point to

a bundle. If the expression value points to a bundle, the existing bundle is used. If it does not, and the

expression consists only of a single numeric variable, then a new, empty bundle is created, and the

variable value is set to point to the new bundle.

That may seem complex, but it isn't, really. If there is a bundle, use it. If there is not, try to create a new

one – but BASIC! can't create a new bundle if you don't give it a variable name. BASIC! uses the variable

to tell you how to find the new bundle.

BUNDLE.PUT b,"key1", 1.2 % try to put a value in the bundle pointed to by b

BUNDLE.PUT 10, key2$, value2 % try to put a value in the 10th bundle created

BUNDLE.REMOVE c + d, key$[3], % try to remove a key/value pair from a bundle

% pointed to by c + d

In the first example, if the value of b points to a bundle, the Bundle.put puts "key1" and the value 1.2

into that bundle. If b is a new variable, its value is 0.0, so it does not point to a bundle. In that case, the

Original Author Paul Laughton, 2011 Page 48 De Re BASIC!

Bundle.put creates a new bundle, puts "key1" and the value 1.2 into the new bundle, and sets b to

point to the new bundle.

In the second example, if there are at least ten bundles, then the Bundle.put tries to put the key named

in the variable key2$ and the value of the variable value2 into bundle 10. If there is no bundle 10, then

the command does nothing. It can't create a new variable because you did not provide a variable to

return the bundle pointer.

In the third example, the bundle pointer is the value of the expression c + d. If there is no such bundle,

the command does nothing. To create a new bundle, the bundle pointer expression must be a single

numeric variable.

Bundle Commands

Bundle.create <pointer_nvar>

A new, empty bundle is created. The bundle pointer is returned in <pointer_nvar>.

Example:

BUNDLE.CREATE bptr

Bundle.put <pointer_nexp>, <key_sexp>, <value_nexp>|<value_sexp>

The value expression will be placed into the specified bundle using the specified key. If the bundle does

not exist, a new one may be created.

The type of the value will be determined by the type of the value expression.

Example:

BUNDLE.PUT bptr, "first_name", "Frank"

BUNDLE.PUT bptr,"age", 44

Bundle.get <pointer_nexp>, <key_sexp>, <nvar>|<svar>

Places the value specified by the key string expression into the specified numeric or string variable. The

type (string or numeric) of the destination variable must match the type stored with the key. If the

bundle does not exist or does not contain the requested key, the command generates a run-time error.

Example:

BUNDLE.GET bptr,"first_name", first_name$

BUNDLE.GET bptr,"age", age

Bundle.keys <bundle_ptr_nexp>, <list_ptr_nexp>

Returns a list of the keys currently in the specified bundle.

The bundle pointer parameter <bundle_ptr_nexp> specifies the bundle from which to get the keys. If

the bundle does not exist, a new one may be created.

Original Author Paul Laughton, 2011 Page 49 De Re BASIC!

The list pointer parameter <list_ptr_next> specifies the list into which to write the keys. The previous

contents of the list are discarded. If the parameter does not specify a valid string list to reuse, and the

parameter is a string variable, a new list is created and a pointer to the list is written to the variable.

The key names in the returned list may be extracted using the various list commands.

Example:

BUNDLE.KEYS bptr, list

LIST.SIZE list, size

FOR i = 1 TO size

 LIST.GET list, i, key$

 BUNDLE.TYPE bptr, key$, type$

 IF type$ = "S"

 BUNDLE.GET bptr, key$, value$

 PRINT key$, value$

 ELSE

 BUNDLE.GET bptr, key$, value

 PRINT key$, value

 ENDIF

NEXT i

Bundle.contain <pointer_nexp>, <key_sexp> , <contains_nvar>

If the key specified in the key string expression is contained in the bundle's keys then the "contains"

numeric variable will be returned with a non-zero value. The value returned will be zero if the key is not

in the bundle. If the bundle does not exist, a new one may be created.

Bundle.type <pointer_nexp>, <key_sexp>, <type_svar>

Returns the value type (string or numeric) of the specified key in the specified string variable. The

<type_svar> will contain an uppercase "N" if the type is numeric. The <type_svar> will contain an

uppercase "S" if the type is a string. If the bundle does not exist or does not contain the requested key,

the command generates a run-time error.

Example:

BUNDLE.TYPE bptr, "age", type$

PRINT type$ % will print N

Bundle.remove <pointer_nexp>, <key_sexp>

Removes the key named by the string expression <key_sexp>, along with the associated value, from the

bundle pointed to by the numeric expression <pointer_nexp>. If the bundle does not contain the key,

nothing happens. If the bundle does not exist, a new one may be created.

Bundle.clear <pointer_nexp>

The bundle pointed to by <pointer_nexp> will be cleared of all tags. It will become an empty bundle. If

the bundle does not exist, a new one may be created.

Original Author Paul Laughton, 2011 Page 50 De Re BASIC!

Stacks

Stacks are like a magazine for a gun.

The last bullet into the magazine is the first bullet out of the magazine. This is also what is true about

stacks. The last object placed into the stack is the first object out of the stack. This is called LIFO (Last In

First Out).

An example of the use of a stack is the BASIC! Gosub command. When a Gosub command is executed

the line number to return to is "pushed" onto a stack. When a return is executed the return line number

is "popped" off of the stack. This methodology allows Gosubs to be nested to any level. Any return

statement will always return to the line after the last Gosub executed.

A running example of Stacks can be found in the Sample Program file, f29_stack.bas.

There is no fixed limit on the size or number of stacks. You are limited only by the memory of your

device.

Stack Commands

Stack.create N|S, <ptr_nvar>

Creates a new stack of the designated type (N=Number, S=String). The stack pointer is in <ptr_nvar>.

Stack.push <ptr_nexp>, <nexp>|<sexp>

Pushes the <nexp> or <sexp> onto the top of the stack designated by <ptr_nexp>.

The type of value expression pushed must match the type of the created stack.

Stack.pop <ptr_nexp>, <nvar>|<svar>

Pops the top-of-the-stack value designated by <ptr_nexp> and places it into the <nvar> or <svar>.

The type of the value variable must match the type of the created stack.

Stack.peek <ptr_nexp>, <nvar>|<svar>

Returns the top-of-stack value of the stack designated by <ptr_nexp> into the <nvar> or <svar>. The

value will remain on the top of the stack.

The type of the value variable must match the type of the created stack.

Original Author Paul Laughton, 2011 Page 51 De Re BASIC!

Stack.type <ptr_nexp>, <svar>

The type (numeric or string) of the stack designated by <ptr_nexp> will be returned in <svar>. If the

stack is numeric, the upper case character "N" will be returned. If the stack is a string stack, the upper

case character "S" will be returned.

Stack.isEmpty <ptr_nexp>, <nvar>

If the stack designated by <ptr_nexp> is empty the value returned in <nvar> will be 1. If the stack is not

empty the value will be 0.

Stack.clear <ptr_nexp>

The stack designated by <ptr_nexp> will be cleared.

Queues

A Queue is like the line that forms at your bank. When you arrive, you get in the back of the line or

queue. When a teller becomes available the person at the head of the line or queue is removed from the

queue to be serviced by the teller. The whole line moves forward by one person. Eventually, you get to

the head of the line and will be serviced by the next available teller. A queue is something like a stack

except the processing order is First In First Out (FIFO) rather than LIFO.

Using our customer order processing analogy, you could create a queue of order bundles for the order

processing department. New order bundles would be placed at the end of the queue. The top-of-the-

queue bundle would be removed by the order processing department when it was ready to service a

new order.

There are no special commands in BASIC! for Queue operations. If you want to make a queue, create a

list.

Use List.add to add new elements to the end of the queue.

Use List.get to get the element at the top of the queue and use List.remove to remove that top of queue

element. You should, of course, use List.size before using List.get to ensure that there is a queued

element remaining

Comments

! - Single Line Comment

If the first character in a line is the "!" character, BASIC! considers the entire line a comment and ignores

it. If the "!" appears elsewhere in the line it does not indicate a comment.

Rem - Single Line Comment (legacy)

If the first three characters in a line are "Rem", "REM", or even "rEm", BASIC! considers the entire line a

comment and ignores it. If "Rem" appears elsewhere in the line it does not indicate a comment.

Original Author Paul Laughton, 2011 Page 52 De Re BASIC!

!! - Block Comment

When a line begins with the "!!" characters, all lines that follow are considered comments and are

ignored by BASIC! The Block Comment section ends at the next line that starts with "!!"

% - Middle of Line Comment

If the "%" character appears in a line (except within a quoted string) then rest of the line is a comment.

Expressions

Numeric Expression <nexp>

A numeric expression consists of one or more numeric variables or numeric constants separated by

binary operators and optionally preceded by unary operators. The definition can be stated more

completely using this standard formal notation:

<nexp> := {<numeric variable>|<numeric constant} {<noperator> <nexp>}

The next few sections define all of the terms.

Numeric Operators <noperator>

The numeric operators are listed by precedence. Higher precedence operators are executed before

lower precedence operators. Precedence can be changed by using parentheses.

1. Unary +, Unary –

2. Exponent ^

3. Multiply *, Divide /

4. Add +, Subtract –

Note that the comma (',') is not an operator in BASIC!. It is sometimes uses as a separator between

expressions; for example, see the PRINT command.

Numeric Expression Examples
a

a*b + 4/d – 2*(d^2)

a + b + d + RND()

b + CEIL(d/25) + 5

Pre- and Post-Increment Operators

 ++x Increments the value of x by 1 before the x value is used

 --y Decrements the value of y by 1 before the y value is used

 x++ Increments the value of x by 1 after the x value is used

y-- Decrements the value of y by 1 after the y value is used

a = 5 % creates the variable a and sets it to 5

PRINT --a % sets a to 4 and prints 4

Original Author Paul Laughton, 2011 Page 53 De Re BASIC!

PRINT a-- % prints 4 and sets a to 3

These operations work only on numeric variables. Their action is performed as part of evaluating the

variable, so they do not follow normal precedence rules.

Using these operators on a variable makes the variable unavailable for other operations that require a

variable. For example, you cannot pass a variable by reference (see User-Defined functions) if you pre-

or post-increment or -decrement it, because you cannot pass an expression by reference. An exception

is made to allow implicit assignment (actual or implied LET).

String Expression <sexp>

A string expression consists of one or more string variables or string constants separated by '+'

operators. The definition can be stated more completely using this standard formal notation:

<sexp> := {<string variable>|<string constant>} { + <sexp>}

There is only one string operator: +. This is the concatenation operator. It is used to join two strings:

PRINT "abc" + "def" % prints abcdef

Logical Expression <lexp>

Logical expressions, or Boolean expressions, produce only two results: false or true. False is represented

in BASIC! by the numeric value of zero. Anything that is not zero is true. False = 0. True = not 0.

There are two types of logical expressions: Numeric logical expressions and string logical expressions.

Both types produce a numerically-represented values of true or false. Each type consists of one or more

variables or constants separated by binary logical operators, formally defined like this:

<slexp> := {<string variable>|<string constant>} <logical operator> {<string variable>|<string constant>}

<nlexp> := {<numeric variable>|<numeric constant>} <logical operator> {<numeric variable>|<numeric

constant>}

There is also the unique unary NOT (!) operator. NOT inverts the truth of a logical expression.

Logical Operators

Most of the logical operators are used for comparison. You can compare strings or numbers (<, =, etc.).

You can use the other Boolean operators (!, &, |) on numbers but not on strings.

This table shows all of the Logical operators. They are listed by precedence with the highest precedence

first. Precedence may be modified by using parentheses.

Precedence Operator Meaning Operands

1 ! Unary Not One <nlexp> only

Original Author Paul Laughton, 2011 Page 54 De Re BASIC!

2 <
>

<=
>=

Less Than
Greater Than
Less Than or Equal
Greater Than or Equal

Two <nlexp> or two <slexp>

3 =
<>

Equal
Not Equal

Two <nlexp> or two <slexp>

4 &
|

And
Or

Two <nlexp> only

Examples of Logical Expressions
1 < 2 (true)

3 <> 4 (true)

"a" < "bcd" (true)

1 & 0 (false)

!(1 & 0) (true)

Parentheses

Parentheses can be used to override operator precendence.

a = b * c + d % the multiplication is done first

a = b * (c + d) % the addition is done first

Parentheses can also be placed around a variable, anywhere except to the left of an = sign. This can be

useful in places where BASIC! may mistake part of a variable for a special keyword. For an example, see

Program Control Commands – For - To - Step / Next, below.

Assignment Operations

Variables get values by means of assignment statements. Simple assignment statements are of the form:

<nvar> = <nexp>

<svar> = <sexp>

The special form of the statement allows BASIC! to infer the command. The implied command is LET.

Let

The original Basic language used the command, LET, to denote an assignment operation as in:

LET <nvar> = <nexp>

BASIC! also has the LET command but it is optional. If you use other programming languages, it may look

strange to you, but there are two reasons you might use LET.

First, you must use LET if you want to have a variable name start with a BASIC! keyword. Such keywords

may not appear at the beginning of a new line. The statement:

Letter$ = "B"

Original Author Paul Laughton, 2011 Page 55 De Re BASIC!

is seen by BASIC! as

LET ter$ = "B"

If you really want to use Letter$ as a variable, you can safely use it by putting it in a LET statement:

LET Letter$ = "B"

If you do the assignment in a single-line IF statement, you must also use the LET command:

IF 1 < 2 THEN LET letter$ = "B"

Second, assignment is faster with the LET command than without it.

OpEqual Assignment Operations

All of the binary arithmetic and logical operators (+, -, *, /, ^, &, |) may be used with the equals sign (=)

to make a single "OpEqual" operator. The combined operator works like this:

var op= expression is the same as var = var op (expression)

 Here are some examples:

a += 1 is the same as a = a + 1

a$ += "xyz" is the same as a$ = a$ + "xyz"

b /= 5 + 3 is the same as b = b / (5 + 3)

c ^= log(37) + 1 is the same as c = c ^ (log(37) + 1)

d *= --d + d-- is the same as d = d * (--d + d--)

m &= (x$ = y$) | (x$!= z$) is the same as m = m & ((x$ = y$) | (x$!= z$))

Math Functions

Math functions act like numeric variables in a <nexp> (or <lexp>).

BOR(<nexp1>, <nexp2>)

Returns the logical bitwise value of <nexp1> OR <nexp2>. The double-precision floating-point values are

converted to 64-bit integers before the operation.

BOR(1,2) is 3

BAND(<nexp1>, <nexp2>)

Returns the logical bitwise value of <nexp1> AND <nexp2>. The double-precision floating-point values

are converted to 64-bit integers before the operation.

BAND(3,1) is 1

Original Author Paul Laughton, 2011 Page 56 De Re BASIC!

BXOR(<nexp1>, <nexp2>)

Returns the logical bitwise value of <nexp1> XOR <nexp2>. The double-precision floating-point values

are converted to 64-bit integers before the operation.

BXOR(7,1) is 6

BNOT(<nexp>)

Returns the bitwise complement value of <nexp>. The double-precision floating-point value is converted

to a 64-bit integer before the operation.

BNOT(7) is -8

HEX$(BNOT(HEX("1234"))) is ffffffffffffedcb

ABS(<nexp>)

Returns the absolute value of <nexp>.

SGN(<nexp>)

Returns the signum function of the numerical value of <nexp>, representing its sign.

When the value is: Return:

> 0 1

= 0 0

< 0 -1

RANDOMIZE({<nexp>})

Creates a pseudo-random number generator for use with the RND() function. The optional seed

parameter <nexp> initializes the generator. Omitting the parameter is the same as specifying 0. If you

call RND() without first calling RANDOMIZE(), it is the same as if you had executed RANDOMIZE(0).

A non-zero seed initializes a predictable series of pseudo-random numbers. That is, for a given non-zero

seed value, subsequent RND() calls will always return the same series of values.

If the seed is 0, the sequence of numbers from RND() is unpredictable and not reproducible. However,

repeated RANDOMIZE(0) calls do not produce "more random" sequences.

The RANDOMIZE() function always returns zero.

RND()

Returns a random number generated by the pseudorandom number generator. If a RANDOMIZE(n) has

not been previously executed then a new random generator will be created using RANDOMIZE(0).

The random number will be greater than or equal to zero and less than one. (0 <= n < 1).

d = FLOOR(6 * RND() + 1) % roll a six-sided die

Original Author Paul Laughton, 2011 Page 57 De Re BASIC!

MAX(<nexp>, <nexp>)

Returns the maximum of two numbers as an <nvar>.

MIN(<nexp>, <nexp>)

Returns the minimum of two numbers as an <nvar>.

CEIL(<nexp>)

Rounds up towards positive infinity. 3.X becomes 4 and -3.X becomes -3.

FLOOR(<nexp>)

Rounds down towards negative infinity. 3.X becomes 3 and -3.X becomes -4.

INT(<nexp>)

Returns the integer part of <nexp>. 3.X becomes 3 and -3.X becomes -3. This operation may also be

called truncation, rounding down, or rounding toward zero.

FRAC(<nexp>)

Returns the fractional part of <nexp>. 3.4 becomes 0.4 and -3.4 becomes -0.4.

FRAC(n) is equivalent to "n - INT(n)".

MOD(<nexp1>, <nexp2>)

Returns the remainder of <nexp1> divided by <nexp2>. If <nexp2> is 0, the function generates a runtime

error.

ROUND(<value_nexp>{, <count_nexp>{, <mode_sexp>}})

In it simplest form, ROUND(<value_nexp>), this function returns the closest whole number to <nexp>.

You can use the optional parameters to specify more complex operations.

The <count_nexp> is an optional decimal place count. It sets the number of places to the right of the

decimal point. The last digit is rounded. The decimal place count must be >= 0. Omitting the parameter

is the same as setting it to zero.

The <mode_sexp> is an optional rounding mode. It is a one- or two-character mnemonic code that tells

ROUND() what kind of rounding to do. It is not case-sensitive. There are seven rounding modes:

Mode: Meaning: -3.8 -3.5 -3.1 3.1 3.5 3.8

"HD" Half-down -4.0 -3.0 -3.0 3.0 3.0 4.0

"HE" Half-even -4.0 -4.0 -3.0 3.0 4.0 4.0

"HU" Half-up -4.0 -4.0 -3.0 3.0 4.0 4.0

"D" Down -3.0 -3.0 -3.0 3.0 3.0 3.0

"U" Up -4.0 -4.0 -4.0 4.0 4.0 4.0

Original Author Paul Laughton, 2011 Page 58 De Re BASIC!

"F" Floor -4.0 -4.0 -4.0 3.0 3.0 3.0

"C" Ceiling -3.0 -3.0 -3.0 4.0 4.0 4.0

In this table, "down" means "toward zero" and "up" means "away from zero" (toward ±∞)

"Half" refers to behavior when a value is half-way between rounding up and rounding down(x.5

or -x.5). "Half-down" rounds x.5 towards zero and "half-up" rounds x.5 away from zero.

"Half-even" is either "half-down" or "half-up", whichever would make the result even. 4.5 and

3.5 both round to 4.0. "Half-even" is also called "banker’s rounding", because it tends to average

out rounding errors.

If you do not provide a <mode_sexp>, ROUND() adds +0.5 and rounds down (toward zero). This is legacy

behavior, copied from earlier versions of BASIC!. ROUND(n) is NOT the same as ROUND(n, 0).

ROUND() generates a runtime error if <count_nexp> < 0 or <mode_sexp> is not valid.

Examples:
pi = ROUND(3.14159) % pi is 3.0

pi = ROUND(3.14159, 2) % pi is 3.14

pi = ROUND(3.14159, , "U") % pi is 4.0

pi = ROUND(3.14159, 4, "F") % pi is 3.1415

negpi = ROUND(-3.14159, 4, "D") % negpi is -3.1416

Note that FLOOR(n) is exactly the same as ROUND(n, 0, "F"), but FLOOR(n) is a little faster. In the same

way, CEIL(n) is the same as ROUND(n, 0, "C"), and INT(n) is the same as ROUND(n, 0, "D").

SQR(<nexp>)

Returns the closest double-precision floating-point approximation of the positive square root of <nexp>.

If the value of <nexp> is negative, the function generates a runtime error.

CBRT(<nexp>)

Returns the closest double-precision floating-point approximation of the cube root of <nexp>.

LOG(<nexp>)

Returns the natural logarithm (base e) of <nexp>.

LOG10(<nexp>)

Returns the base 10 logarithm of the <nexp>.

EXP(<nexp>)

Returns e raised to the <nexp> power.

POW(<nexp1>, <nexp2>)

Returns <nexp1> raised to the <nexp2> power.

Original Author Paul Laughton, 2011 Page 59 De Re BASIC!

HYPOT(<nexp_x>, <nexp_y)

Returns SQR(x2+y2) without intermediate overflow or underflow.

PI()

Returns the double-precision floating-point value closest to pi.

SIN(<nexp>)

Returns the trigonometric sine of angle <nexp>. The units of the angle are radians.

COS(<nexp>)

Returns the trigonometric cosine of angle <nexp>. The units of the angle are radians.

TAN(<nexp>)

Returns the trigonometric tangent of angle <nexp>. The units of the angle are radians.

SINH(<nexp>)

Returns the trigonometric hyperbolic sine of angle <nexp>. The units of the angle are radians.

COSH(<nexp>)

Returns the trigonometric hyperbolic cosine of angle <nexp>. The units of the angle are radians.

ASIN(<nexp>)

Returns the arc sine of the angle <nexp>, in the range of -pi/2 through pi/2. The units of the angle are

radians. If the value of <nexp> is less than -1 or greater than 1, the function generates a runtime error.

ACOS(<nexp>)

Returns the arc cosine of the angle <nexp>, in the range of 0.0 through pi.The units of the angle are

radians. If the value of <nexp> is less than -1 or greater than 1, the function generates a runtime error.

ATAN(<nexp>)

Returns the arc tangent of the angle <nexp>, in the range of -pi/2 through pi/2. The units of the angle

are radians.

ATAN2(<nexp_y>, <nexp_x>)

Returns the angle theta from the conversion of rectangular coordinates (x, y) to polar coordinates

(r,theta). (Please note the order of the parameters in this function.)

TODEGREES(<nexp>)

Converts <nexp> angle measured in radians to an approximately equivalent angle measured in degrees.

Original Author Paul Laughton, 2011 Page 60 De Re BASIC!

TORADIANS(<nexp>)

Converts <nexp> angle measured in degrees to an approximately equivalent angle measured in radians.

VAL(<sexp>)

Returns the numerical value of the string expression <sexp> interpreted as a signed decimal number. If

the string is empty ("") or does not represent a number, the function generates a runtime error.

 A sign ("+" or "-"), a decimal point ("." only), and an exponent (power of 10) are optional.

 An exponent is "e" or "E" followed by a number. The number may have a sign but no decimal point.

 The string may have leading and/or trailing spaces, but no spaces between any other characters.

IS_NUMBER(<sexp>)

Tests a string expression <sexp> in the same way as VAL() and returns a logical value:
 TRUE (non-zero) if VAL() would successfully convert the string to a number

 FALSE (0) if VAL() would generate a run-time error.

For example, VAL("name") generates a run-time error, but IS_NUMBER("name") returns FALSE.

If VAL() would report a syntax error, IS_NUMBER() reports a syntax error.

For example, IS_NUMBER(), IS_NUMBER(num), and IS_NUMBER(5) are syntax errors.

LEN(<sexp>)

Returns the length of the <sexp>.

HEX(<sexp>)

Returns the numerical value of the string expression <sexp> interpreted as a hexadecimal integer. The

characters of the string can be only hexadecimal digits (0-9, a-h, or A-H), with an optional leading sign

("+" or "-"), or the function generates a runtime error.

OCT(<sexp>)

Returns the numerical value of the string expression <sexp> interpreted as an octal integer. The

characters of the string can be only octal digits (0-7), with an optional leading sign ("+" or "-"), or the

function generates a runtime error.

BIN(<sexp>)

Returns the numerical value of the string expression <sexp> interpreted as a binary integer. The

characters of the string can be only binary digits (0 or 1), with an optional leading sign ("+" or "-"), or the

function generates a runtime error.

Original Author Paul Laughton, 2011 Page 61 De Re BASIC!

SHIFT(<value_nexp>, <bits_nexp>)

Shifts the value <value_nexp> by the bit count <bits_nexp>. If the bit count is < 0, the value will be

shifted left. If the bit count is > 0, the bits will be shifted right. The right shift will replicate the sign bit.

The double-precision floating-point value are truncated to 64-bit integers before the operation.

ASCII(<sexp>{, <index_nexp>})

Returns the ASCII value of one character of <sexp>. By default, it is the value of the first character. You

can use the optional <index_nexp> to select any character. The index of the first character is 1.

A valid ASCII value is between 0 and 255. If <sexp> is an empty string ("") the value returned will be 256

(one more than the largest 8-bit ASCII value). For non-ASCII Unicode characters, ASCII() returns invalid

values; use UCODE() instead.

UCODE(<sexp>{, <index_nexp>})

Returns the Unicode value of one character of <sexp>. By default, it is the value of the first character.

You can use the optional <index_nexp> to select any character. The index of the first character is 1.

If <sexp> is an empty string ("") the value returned will be 65536 (one more than the largest 16-bit

Unicode value). If the selected character of <sexp> is a valid ASCII character, this function returns the

same value as ASCII().

IS_IN(<sub_sexp>, <base_sexp>{, <start_nexp>})

Returns the position of an occurrence of the substring <sub_sexp> in the base string <base_sexp>.

If the optional start parameter <start_nexp> is not present then the function starts at the first character

and searches forward.

If the start parameter is >= 0, then it is the starting position of a forward (left-to-right) search. The left-

most character is position 1. If the parameter is negative, it is the starting position of a reverse (right-to-

left) search. The right-most character is position -1.

If the substring is not in the base string, the function returns 0. It can not return a value larger than the

length of the base string.

STARTS_WITH(<sub_sexp>, <base_sexp>{, <start_nexp>})

Determines if the substring <sub_sexp> exactly matches the part of the base string <base_sexp> that

starts at the position <start_nexp>. The <start_nexp> parameter is optional; if it is not present then the

default starting position is 1, the first character, so the base string must start with the substring. If

present, <start_nexp> must be >= 1.

The function returns the length of the matching substring. If no match is found, the function returns 0.

Original Author Paul Laughton, 2011 Page 62 De Re BASIC!

ENDS_WITH(<sub_sexp>, <base_sexp>)

Determines if the substring <sub_sexp> exactly matches the end of the base string <base_sexp>.

If the base string ends with the substring, the function returns the index into the base string where the

substring starts. The value will always be >= 1. If no match is found, the function returns 0.

GR_COLLISION(<object_1_nvar>, <object_2_nvar>)

The variables <object_1_nvar> and <object_2_nvar> are the object pointers returned when the objects

were created.

If the boundary boxes of the two objects overlap then the function will return true (not zero). If they do

not overlap then the function will return false (zero).

Objects that may be tested for collision are: point, rectangle, bitmap, circle, arc, oval, and text. In the

case of a circle, an arc, an oval, or text, the object’s rectangular boundary box is used for collision

testing, not the actual drawn object.

BACKGROUND()

A running BASIC! program continues to run when the HOME key is tapped. This is called running in the

Background. When not in the Background mode, BASIC! is in the Foreground mode. BASIC! exits the

Background mode and enters the Foreground mode when the BASIC! icon on the home screen is

tapped.

Sometimes a BASIC! programmer wants to know if the program is running in the Background. One

reason for this might be to stop music playing while in the Background mode.

The BACKGROUND() function returns true (1) if the program is running in the background. It returns

false (0) if the program is not running in the background.

If you want to be able to detect Background mode while Graphics is open, you must not call Gr.render

while in the Background mode. Doing so will cause the program to stop running until the Foreground

mode is re-entered. Use the following code line for all Gr.render commands:

IF !BACKGROUND() THEN GR.RENDER

Time Functions

CLOCK()

Returns the time in milliseconds since the last boot.

TIME()

Returns the time in milliseconds since 12:00:00 AM, January 1, 1970, UTC (the "epoch"). The time

interval is the same everywhere in the world, so the value is not affected by the TimeZone command.

Original Author Paul Laughton, 2011 Page 63 De Re BASIC!

TIME(<year_exp>, <month_exp>, <day_exp>, <hour_exp>, <minute_exp>,

<second_exp>)

Like TIME(), except the parameters specify a moment in time. The specification is not complete, as it

does not include the timezone. You may specify a timezone with the TimeZone command. If you do not

specify a timezone, your local timezone is used.

The parameter expressions may be either numeric expressions or string expressions. This is an unusual

aspect as it isn't allowed anywhere else in BASIC!. If a parameter is a string, then it must evaluate to a

number: digits only, one optional decimal point somewhere, optional leading sign, no embedded spaces.

If the string parameter does not follow the rules, BASIC! reports a syntax error, like using a string in a

place that expects a numeric expression.

TIME(…) (the function) and Time (the command) are inverse operations. TIME(…) can take the first six

return parameters of the Time command directly as input parameters.

With the USING$() or FORMAT_USING$() functions, you can express a moment in time as a string in

many different ways, formatted for your locale.

String Functions

GETERROR$()

Return information about a possible error condition.

An error that stops your program writes an error message to the Console. If you trap the error with the

OnError: interrupt label, your program does not stop and the error is not printed. You can use

GETERROR$() to retrieve the error message.

Certain commands can report errors without stopping your program. These commands include

Audio.load, Byte.open, Text.open, Font.load, GPS.open, GrabFile, GrabURL, Gr.get.type, and any

command that can create a bitmap.

When you run one of these commands, you can call GETERROR$() to retrieve information about the

error state. For example, if Text.open cannot open a file, it sets the file pointer to -1, and writes a

GETERROR$() message such as "<filename> not found". If no error occurred, GETERROR$() returns the

string "No error".

Because there are commands that clear the error message, you should not expect GETERROR$() to

retain its message. Capture the message in a variable as soon as possible, and do not call GETERROR$()

again for the same error.

Original Author Paul Laughton, 2011 Page 64 De Re BASIC!

CHR$(<nexp>, ...)

Return the character string represented by the values of list of numerical expressions. Each <nexp> is

converted to a character. The expressions may have values greater than 255 and thus can be used to

generate Unicode characters.

PRINT CHR$(16*4 + 3) % Hexadecimal 43 is the character "C". This prints: C
PRINT CHR$(945, 946) % Decimal for the characters alpha and beta: Prints: αβ

LEFT$(<sexp>, <count_nexp>)

Return the left-most characters of the string <sexp>. The number of characters to return is set by the

count parameter, <count_nexp>.

 If the count is greater than 0, return <count_nexp> characters, counting from the left.

 If the count is less than 0, return all but <count_nexp> characters. The number to return is the

string length reduced by <count_nexp>: LEFT$(a$, -2) is the same as LEFT$(a$, LEN(a$) - 2).

 If the count is 0, return an empty string ("").

 If the count is greater than the length of the string, return the entire string.

MID$(<sexp>, <start_nexp>{, <count_nexp>})

Return a substring of the string <sexp>, beginning or ending at the start position <start_nexp>. The first

character of the string is at position 1. If the start position is 0 or negative, it is set to 1.

The count parameter is optional. If it is omitted, return all of the characters from the start position to

the end of the string.

a$ = MID$("dinner", 2) % a$ is "inner"

Otherwise, the absolute value of the count specifies the length of the returned substring:

 If the count is greater than 0, begin at <start_nexp> and count characters to the right.

That is, return the substring that begins at the start position.

If the start position is greater than the length of the string, return an empty string ("").

 If the count is less than 0, begin at <start_nexp> and count characters to the left.

That is, return the substring that ends at the start position.

If the start position is greater than the length of the string, it is set to the end of the string.

 If the count is 0, return an empty string ("").

a$ = MID$("dinner", 2, 3) % a$ is "inn"

a$ = MID$("dinner", 4, -3) % a$ is "inn"

a$ = MID$("dinner", 3, 0) % a$ is ""

RIGHT$(<sexp>, <count_nexp>)

Return the right-most characters of the string <sexp>. The number of characters to return is set by the

count parameter, <count_nexp>.

Original Author Paul Laughton, 2011 Page 65 De Re BASIC!

 If the count is greater than 0, return <count_nexp> characters, counting from the right.

 If the count is less than 0, return all but <count_nexp> characters. The number to return is the

string length reduced by <count_nexp>: RIGHT$(a$, -2) is the same as RIGHT$(a$, LEN(a$) - 2).

 If the count is 0, return an empty string ("").

 If the count is greater than the length of the string, return the entire string.

REPLACE$(<sexp>, <argument_sexp>, <replace_sexp>)

Returns <sexp> with all instances of <argument_sexp> replaced with <replace_sexp>.

TRIM$(<sexp>{, <test_sexp>})

Returns <sexp> with leading and trailing occurrences of <test_sexp> removed.

The expression to trim off, <test_sexp>, is optional. If omitted, all leading and trailing whitespace is

removed. That is, the default <test_sexp> is the regular expression "\s+", which means "all whitespace".

To use this regular expression in a BASIC! string, you must write it "\\s+" (escape the backslash).

As with the WORD$() function and the SPLIT command, the <test_exp> is a regular expression. See Split

for a note about Regular Expressions.

LTRIM$(<sexp>{, <test_sexp>})

RTRIM$(<sexp>{, <test_sexp>})

Exactly like TRIM$(), except that LTRIM$() trims only the left end of the source string <sexp>, while

RTRIM$() trims only the right end.

WORD$(<source_sexp>, <n_nexp> {, <test_sexp>})

This function returns a word from a string. The <source_sexp> string is split into substrings at each

location where <test_sexp> occurs. The <n_nexp> parameter specifies which substring to return;

numbering starts at 1. The <test_sexp> is removed from the result. The <test_sexp> parameter is an

optional Regular Expression; if it is not given, the source string is split on whitespace. Specifically, the

default <test_sexp> is "\s+".

Leading and trailing occurrences of <test_sexp> are stripped from <source_sexp> before it is split. If

<n_nexp> is less than 1 or greater than the number of substrings found in <source_sexp>, then an

empty string ("") is returned. Two adjacent occurrences of <test_sexp> in <source_sexp> result in an

empty string; <n_nexp> may select this empty string as the return value.

Examples:
string$ = "The quick brown fox"

result$ = WORD$(string$, 2); % result$ is "quick"

string$ = ":a:b:c:d"

delimiter$ = ":"

SPLIT array$[], string$, delimiter$ % array$[1] is ""

Original Author Paul Laughton, 2011 Page 66 De Re BASIC!

result$ = WORD$(string$, 1, delimiter$) % result$ is "a", not ""

This function is similar to the Split command. See Split for a note about Regular Expressions.

ENCODE$(<type_sexp>, {<qualifier_sexp>}, <source_sexp>)

Returns the string <source_sexp> encoded in one of several ways, as specified by the <type_sexp>. The

<qualifier_sexp> usage depends on the type:

Type Qualifier Default Result

"ENCRYPT" password ""
(empty)

Encrypts the source string using the password parameter. The
encryption algorithm is "PBEWithMD5AndDES". This usage of
ENCODE$() works the same was as the ENCRYPT command.

"DECRYPT" password "" Same as type "ENCRYPT".

"URL" charset "UTF-8" Encodes the source string using the format required by HTML
application/x-www-form-urlencoded. You should omit the
charset parameter.

"BASE64" charset "UTF-8" Encodes the source string into the Base64 representation of
binary data. See RFCs 2045 and 3548. The simplest way to use
this function is to omit the charset parameter.

The type is required, but see below for the two-parameter form of ENCODE$() and DECODE$().

The type IS NOT case-sensitive: "BASE64", "base64", and "Base64" are all the same.

The qualifier is optional, but its comma is required.

If you supply the qualifier, whether password or charset, it IS case-sensitive.

"ENCRYPT", "DECRYPT", and "URL" can be used on any BASIC! string. The string is converted to a byte

stream, then the byte stream is encrypted or URL-encoded. For encryption, the byte stream is always

converted using UTF-8. Users of URL-encoded strings generally expect UTF-8, too, so that is the default

behavior if you omit the optional charset parameter, but you can specify a different character encoding.

"BASE64" also converts its string to a byte-stream before encoding it to Base64. The default conversion,

using UTF-8, works with any BASIC! string; specifying another character set encoding may corrupt data.

Normally, you would use "BASE64" on binary data in a buffer string. This is the format returned by the

Byte.read.buffer command, for example. A buffer string is a special use of the BASIC! string in which

each 16-bit character consists of one byte of 0 and one byte of data. In this case, you may specify any

valid charset with no data corruption. The encoding string will change, but it can always be decoded

using the same charset.

See the two-parameter form of ENCODE$(), below, for a partial list of valid charsets.

DECODE$(<type_sexp>, {<qualifier_sexp>}, <source_sexp>)

Returns the result of decoding the string <source_sexp> that was encoded in one of several ways, as

specified by the <type_sexp>. The <qualifier_sexp> usage depends on the type. The type and qualifier

http://www.w3.org/TR/html4/interact/forms.html#h-17.13.4.1
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc3548.txt

Original Author Paul Laughton, 2011 Page 67 De Re BASIC!

parameters describe how the string was encoded. You must use the same type and qualifier that were

used to encode the source string, or you may get unpredictable results.

Type Qualifier Default Result

"ENCRYPT" password ""
(empty)

Decrypts the source string using the password parameter. The
encryption algorithm is "PBEWithMD5AndDES". This usage of
DECODE$() works the same way as the DECRYPT command.

"DECRYPT" password "" Same as type "ENCRYPT".

"URL" charset "UTF-8" Decodes the source string assumed to be in the format
required by HTML application/x-www-form-urlencoded.
You should omit the charset parameter.

"BASE64" charset "UTF-8" Decodes the source string holding the Base64 representation
of binary data. See RFCs 2045 and 3548.

The type is required, but see below for the two-parameter form of ENCODE$() and DECODE$().

The type IS NOT case-sensitive: "BASE64", "base64", and "Base64" are all the same.

The qualifier is optional, but its comma is required.

If you supply the qualifier, whether password or charset, it IS case-sensitive.

The source string is decoded to a byte stream according to the type. Then the byte stream is converted

to a BASIC! string (UTF-16) according to the character encoding (the charset parameter), which describes

how to interpret the byte stream. The charset is always UTF-8 for decryption, and defaults to UTF-8 for

the other types. The most common usage of this function is to omit the charset.

If a Base64 string was encoded from binary data, the resulting BASIC! string will be a buffer string. When

a string is used as a buffer, one byte of data is written into the lower 8 bits of each 16-bit character, and

the upper 8 bits are 0. You can extract the binary data from the string, one byte at a time, using the

ASCII() or UCODE() functions.

See the two-parameter form of ENCODE$(), below, for a partial list of valid charsets.

ENCODE$(<charset_sexp>, <source_sexp>)

Encodes the string <source_sexp> using the character encoding of the <charset_sexp> and returns the

result in a buffer string. When a string is used as a buffer, one byte of data is written into the lower 8

bits of each 16-bit character, and the upper 8 bits are 0.

The charset specifies the rules used to convert the source string into a byte stream. The stream is

written to a buffer string, one byte per character. The bytes are not reassembled into 16-bit characters.

The charsets "UTF-8", "UTF-16", "UTF-16BE", "UTF-16LE", "US-ASCII", and "ISO-8859-1" are always

available. Your device may have additional charsets. The charset names are case-sensitive, but the

standard charsets have aliases for convenience. For example, "utf8" is valid.

If you create a buffer string with ENCODE$(), you can write the bytes to a file with Byte.write.buffer.

For encryption and URL- or Base64-encoding, see the three-parameter form of ENCODE$(), above.

http://www.w3.org/TR/html4/interact/forms.html#h-17.13.4.1
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc3548.txt

Original Author Paul Laughton, 2011 Page 68 De Re BASIC!

DECODE$(<charset_sexp>, <buffer_sexp>)

Decodes the buffer string <buffer_sexp> that was encoded using the <charset_sexp> and returns the

result in a standard BASIC! string. A buffer string is a special use of the BASIC! string in which each 16-bit

character consists of one byte of 0 and one byte of data.

If you attempt to DECODE$() a string that is not a buffer string, you may get unexpected results. Besides

the function ENCODE$(), the commands Byte.read.buffer and BT.read.bytes can write buffer strings.

Your program can also build such strings directly, character-by-character.

If you read data from a file with Byte.read.buffer, you can use DECODE$() to reassemble the bytes into

BASIC! (UTF-16) strings. The charset specifies how the original string was encoded when it was written

as bytes to the file.

For example, a binary file may have embedded text strings for names or titles. In order to allow Unicode,

the text may be encoded. Let’s say you read 32 bytes of binary data, consisting of 8 bytes of binary and

24 bytes of UTF-8-encoded text:

BYTE.READ.BUFFER file, 32, bfr$

namebfr$ = MID$(bfr$, 9)

name$ = DECODE$("UTF-8", namebfr$)

For encryption and URL- or Base64-decoding, see the three-parameter form of DECODE$(), above.

STR$(<nexp>)

Returns the string representation of <nexp>.

LOWER$(<sexp>)

Returns <sexp> in all lower case characters.

UPPER$(<sexp>)

Returns <nexp> in all upper case characters.

VERSION$()

Returns the version number of BASIC! as a string.

INT$(<nexp>)

Returns a string representing the integer part of the numeric expression.

HEX$(<nexp>)

Returns a string representing the hexadecimal representation of the numeric expression.

Original Author Paul Laughton, 2011 Page 69 De Re BASIC!

OCT$(<nexp>)

Returns a string representing the octal representation of the numeric expression.

BIN$(<nexp>)

Returns a string representing the binary representation of the numeric expression.

USING$({<locale_sexp>} , <format_sexp> { , <exp>}...)

Returns a string, using the locale and format expressions to format the expression list.

This function gives BASIC! programs access to the Formatter class of the Android platform. You can find

full documentation here: http://developer.android.com/reference/java/util/Formatter.html.

The <locale_sexp> is a string that tells the formatter to use the formatting conventions of a specific

language and region or country. For example, "en_US" specifies American English conventions.

The <format_sexp> is a string that contains format specifiers, like "%d" or "%7.2f," that tell the

formatter what to do with the expressions that follow.

The format string is followed by a list of zero or more expressions. Most format specifiers take one

argument from the list, in order. If you don’t provide as many arguments as your format string needs,

you will get a detailed Java error message.

Each expression must also match the type of the corresponding format specifier. If you try to apply a

string format specifier, like "%-7s", to a number, or a floating point specifier, like "%5.2f" to a string, you

will get a Java error message.

Locale expression

The USING$() function can localize the output string based on language and region. The locale specifies

the language and region with standardized codes. The <locale_sexp> is a string containing zero or more

codes separated by underscores.

The function accepts up to three codes. The first must be a language code, such as "en", "de", or "ja".

The second must be a region or country code, such as "FR", "US", or "IN". Some language and country

combinations can accept a third code, called the "variant code".

The function also accepts the standard three-letter codes and numeric codes for country or region. For

example, "fr_FR", "fr_FRA", and "fr_250" are all equivalent.

If you want to use the default locale of your Android device, make the <locale_exp> an empty string (""),

or leave it out altogether. If you leave it out, you must keep the comma: USING$(, "%f", x)

If you make a mistake in the <locale_sexp>, you may get an obscure Java error message, but more likely

your locale will be ignored, and your string will be formatted using the default locale of your device.

http://developer.android.com/reference/java/util/Formatter.html

Original Author Paul Laughton, 2011 Page 70 De Re BASIC!

Android devices do not support all possible locales. If you specify a valid locale that your device does not

understand, your string will be formatted using the default locale.

Format expression

If you are familiar with the printf functions of C/C++, Perl, or other languages, you will recognize most of

format specifiers of this function. The format expression is exactly the same as format string of the Java

Formatter class, or the format(String, Object…) method of the Java String, with two exceptions: Boolean

format specifiers are not supported, and hex hash specifiers are limited to numeric and string types.

If you have not programmed in one of those other languages, this will be your introduction to a

powerful tool for formatting text.

A format expression is a string with embedded format specifiers. Anything that is not a format specifier

is copied literally to the function output string. Each embedded format specifier is replaced with the

value of an expression from the list, formatted according to the specifier. For example:

PRINT USING$("","Pi is approximately %f.", PI()) function call

Pi is approximately 3.141593. printed output for English locale

The <locale_exp> is "", meaning "use my default locale".

The <format_exp>, "Pi is approximately %f", has one format specifier, "%f".

"%f" means, "use the default decimal floating point output format".

The expression list has one item, the math function PI().

In the output, "%f" is replaced by the value of the the PI() function.

Your output may be different if your locale language is not English.

Format Specifiers

Here is a brief summary of the available format specifiers:

For this type of data Use these formats Comments

String %s %S %S forces output to upper-case

Number %f %e %E %g %G %a %A Standard BASIC! numbers are floating point
Use %f for decimal output: "1234.567"
Use %e or %E for exponential notation: "1.234e+03"
%E writes upper-case: "1.234E+03"
%g (%G) lets the system choose %f or %e (%E)
%a and %A are "hexadecimal floating point"

Integer %d %o %x %X USING$ can use some math functions as integers
Use %d for decimal, %o for octal, %x %X for hex
%x writes lower-case abcdef, %X writes upper-case

Special integer %c %C %t These specifiers can operate on an integer
%c %C output a character, %C writes upper-case
%t represents a family of time format specifiers

None %% %n These specifiers do not read the expression list
%% writes a single "%" to the output
%n writes a newline, exactly the same as \n

Original Author Paul Laughton, 2011 Page 71 De Re BASIC!

For more information about %a and %A, see the Android documentation linked above.

Android’s %b and %B are not supported because BASIC! has no Boolean type.

Android’s %h and %H hash code specifiers are limited to strings and numbers in BASIC!.

For an explanation of USING$() with integer format specifiers, see below.

There is a whole family of time format specifiers: %t<x> where <x> is another letter. They operate on an

integer, which they interpret as the number of milliseconds since the beginning of January 1, 1970, UTC

(the "epoch"). You can apply time format specifiers to the output of the TIME() functions. Note,

however, that the %t time specifiers use your local timezone, not the TimeZone.set value.

There are more than 30 time format specifiers. A few examples appear below, but to get the full list you

should read the Android documentation linked above.

PRINT USING$("", "The time is: %tI:%<tM:%<tS %<Tp", time()) % the hard way

PRINT USING$("", "The time is: %tr", time()) % same thing!

02:27:16 PM example of printed output

t = TIME(2001, 2, 3, 4, 5, 6) % set 2001/02/03 04:05:06, local timezone

PRINT USING$("sv", "%tA", int(t)) % day in Swedish, prints "lördag"

PRINT USING$("es", "%tB", int(t)) % month in Spanish, prints "febrero"

PRINT USING$("", "%tY/%tm/%td", int(t) , int(t), int(t)) % prints "2001/02/03"

PRINT USING$(, "%tY/%<tm/%<td", int(t)) % prints "2001/02/03"

PRINT USING$("en_GB", "%tH:%<tM:%<tS", int(t)) % prints "04:05:06"

PRINT USING$("in_IN", "%tT", int(t)) % prints "04:05:06"

Note: Date and time are printed for your local timezone, regardless of either the TIMEZONE.SET setting

or the locale parameter. Try the same set of examples with TIMEZONE.SET "UTC". Unless that is your

local timezone, a different hour and perhaps even a different day will be displayed.

Optional Modifiers

The format specifiers can be used exactly as shown in the table. They have default settings that control

how they behave. You can control the settings yourself, fine-tuning the behavior to suit your needs.

You can modify the format specifiers with index, flags, width, and precision, as shown in this example:

"%3$-,15.4f"

"% 3$ -, 15 . 4 f "

 <index> <flags> <width> <precision> <specifier>

Index

Normally the format specifiers are applied to the arguments in order. You can change the order with an

argument index. An index a number followed by a $ character. The argument index 3$ specifies the third

argument in the list.

PRINT USING$("", "%3$s %s %s", "a", "b", "c") % prints "c a b"

Original Author Paul Laughton, 2011 Page 72 De Re BASIC!

The special argument index "<" lets you reuse an argument.

PRINT USING$("", "%o %<d %<h", int(64)) % prints "100 64 40"

In the last example, there is only one argument, but three format specifiers. This is not an error because

the argument is reused.

Flags

There are six flags:

- left-justify; if no flag, right-justify

+ always show sign; if no flag, show "-" but do not show "+"

0 pad numbers with leading zeros; if no flag pad with spaces

, use grouping separators for large numbers

(put parentheses around negative values

alternate notation (leading 0 for octal, leading 0x for hexadecimal)

Width

The width control sets the minimum number of characters to print. If the value to format is longer than

the width setting, the entire value is printed (unless it would exceed the precision setting). If the value

to format is shorter than the width setting, it is padded to fill the width. By default, it is padded with

spaces on the left, but you change this with the "-" and "0" flags.

Precision

The precision control means different things to different data types.

For floating point numbers, precision specifies the number of characters to print after the decimal point,

padding with trailing zeros if needed.

For string values, it specifies the maximum number of characters to print. If precision is less than width,

only precision characters are printed.

"%4s", "foo" " foo"

"%-4s", "foo" "foo "

"%4.2s", "foo" "fo"

The precision control is not valid for other types.

In the example above, %-,15.4f:

The flags "-" and "," mean "left-justify the output" and "use a thousands separator".

The width is 15, meaning the output is to be at least 15 characters wide.

The precision is 4, so there will be exactly four digits after the decimal point.

The whole format specifier means, "format a floating point number (%f) left-justified ("-") in a space 15

characters wide, with 4 characters after the decimal point, with a thousands separator (",")".

Original Author Paul Laughton, 2011 Page 73 De Re BASIC!

The characters used for the decimal point and the thousands separator depend on the locale:

"1,234.5678 " for locale "en"

"1 234,5678 " for locale "fr"

"1.234,5678 " for locale "it"

Integer values

BASIC! has only double-precision floating point numbers. It does not have an integer type. The USING$()

function supports format specifiers ("%d", "%t", "%x") that apply only to integer values.

USING$() has a special relationship with the math functions that intrinsically produce integer results.

BASIC! converts the output of these functions to floating point, for storage in numeric variables, but

USING$() can get the original integer values. For example:

PRINT USING$("", "%d", 123) % ERROR!

PRINT USING$("", "%d", INT(123)) % No error

The functions that can produce integer values for USING$() are:

INT() BIN() OCT() HEX()

CEIL() FLOOR()

ASCII() UCODE()

BAND() BOR() BXOR()

SHIFT() TIME()

FORMAT_USING$(<locale_sexp>, <format_sexp> { , <exp>}...)

Alias for USING$(). You can use the two equivalent functions to make your code easier to read. For
example:

string$ = FORMAT_USING("", "pi is not %d", int(pi()))

Print USING$("en_US", "Balance: $%8.2f", balance)

FORMAT$(<pattern_sexp>, <nexp>)

Returns a string with <nexp> formatted by the pattern <pattern_sexp>.

Leading Sign A negative (-) character for numbers < 0 or a space for numbers >= 0.
The Sign and the Floating Character together form the Floating Field.

Floating Character If the first character of the pattern is not "#" or "." or "-" then that character
becomes a "floating" character. This pattern character is typically a "$".
If no floating character is provided then a space character is used.
See also Overflow, below.

Decimal Point The pattern may have one optional decimal point character (".").
If the pattern has no decimal point, then only the whole number is ouput.
Any digits that would otherwise appear after the decimal point are not output.

Character
(before decimal,
or no decimal)

Each "#" is replaced by a digit from the number. If there are more "#" characters
than digits, then the leading "#" character(s) are replaced by space(s).

Character Each "#" is replaced by a digit from the number. If there are more "#" characters

Original Author Paul Laughton, 2011 Page 74 De Re BASIC!

(after decimal
point)

than significant digits, then the trailing "#" character(s) are replaced by zero(s).
The number of "#" characters after the pattern decimal point specifies the number
of decimal digits that will be output.

% Character
(before decimal,
or no decimal)

Each "%" is replaced by a digit from the number. If there are more "%" characters
than digits, then the leading "%" character(s) are replaced by zero(s).

% Character
(after decimal)

The "%" character is not allowed after the decimal point. This is a syntax error.

Non-pattern
Characters

If any pattern character (other than the first) is not # or %, then that character is
copied directly into the output. If the character would appear before the first digit
of the number, it is replaced by a space. This feature is usually used for commas.

Overflow If the number of digits exceeds the number of # and % characters, then the output
has the ** characters inserted in place of the Floating Field.

Output Size The number of characters output is always the number of characters in the pattern
plus one for the sign
plus one more for the space if the pattern has no Floating Character.

Notes

The sign and the floating character together form a Floating Field two characters wide that always

appears just before the first digit of the formatted output. If there are any leading spaces in the

formatted output, they are placed before the floating field.

The "#" character generates leading spaces, not leading zeros. "##.###" formats 0.123 as ".123". If you

want a leading zero, use a "%". For example "%.###", "#%.###", or "##%" all assure a leading zero.

Be careful mixing # and % characters. Doing so except as just shown can produce unexpected results.

The number of characters output is always the number of characters in the pattern plus the two floating

characters.

Examples

Function Call Output Width

Format$("##,###,###", 1234567) 1,234,567 12 characters

Format$("%%,%%%,%%%.#", 1234567.89) 01,234,567.8 14 characters

Format$("$###,###", 123456) $123,456 9 characters

Format$("$###,###", -1234) -$1,234 9 characters

Format$("$###,###", 12) $12 9 characters

Format$("$%%%,%%%", -12) -$000,012 9 characters

Format$("##.#", 0) .0 6 characters

Format$("#%.#", 0) 0.0 6 characters

Format$("$###.##", -1234.5) **234.50 8 characters

Original Author Paul Laughton, 2011 Page 75 De Re BASIC!

User-Defined Functions

User-Defined Functions are BASIC! functions like ABS(n), MOD(a,b) and LEFT$(a$,n) except that the

operation of the function is defined by the user. User functions should generally be defined at the start

of the program and in particular, they should appear before the places where they are called.

User-Defined Functions may call other User-Defined Functions. A function can even recursively call itself.

You may define a function with the same name as a built-in function. The User-Defined Function always

overrides the built-in function, and the built-in function is not accessible.

Each time a function is called from another function a certain amount of memory is used for the

execution stack. The depth of these nested calls is limited only by the amount of memory that your

particular Android device allocates to applications.

Variable Scope

All variables created while running a User-Defined Function are private to the function. A variable

named v$ in the main program is not the same as variable v$ within a function. Furthermore, a variable

named v$ in a recursively called function is not the same v$ in the calling function.

A function cannot access variables created outside of the function, except as parameters passed by

reference. (See Fn.def, below, for an explanation of parameters passed by value and by reference.)

All variables created while running a User-Defined Function are destroyed when the function returns.

When an array variable is destroyed, its storage is reclaimed. However, when a data structure pointer is

destroyed, the data structure is not destroyed (see next section).

Data Structures in User-Defined Functions

Data structures (List, Stack, Bundle, bitmap, graphical object – anything referenced through a pointer)

are global in scope. That is, if a variable is used as a pointer to a data structure, it points to the same

data structure whether it is used inside or outside of a function. The data structure may have been

created in the main program, the same user-defined function, or some other user-defined function.

This means that if you pass a pointer to a bundle, for example, and modify that bundle inside the

function, the changes will be retained when the function returns. It also means that a function can

modify graphical objects created outside of the function.

Data structures (List, Stack, Bundle, or graphical object) created while running a User-Defined Function

are not destroyed when the function returns. Local variables that point to the data structures are lost,

but you can return a data structure pointer as the function’s return value or through a parameter passed

by reference.

Original Author Paul Laughton, 2011 Page 76 De Re BASIC!

Commands

Fn.def name|name$({nvar}|{svar}|Array[]|Array$[], ...

{nvar}|{svar}|Array[]|Array$[])

Begins the definition of a function. This command names the function and lists the parameters, if any.

If the function name ends with the $ character then the function will return a string, otherwise it will

return a number. The parameter list can contain as many parameters as needed, or none at all. The

parameters may be numeric or string, scalar or array.

Your program must execute Fn.def before it tries to call the named function. Your program must not

attempt to create more than one function with the same name, or the same function more than once.

However, you may override a built-in function by defining your own function with the same name.

The following are all valid:

FN.DEF cut$(a$, left, right)

FN.DEF sum(a, b, c, d, e, f, g, h, i, j)

FN.DEF sort(v$[], direction)

FN.DEF pi() % Overrides built-in. You can make π = 3!

Parameters create variables visible only inside the function. They can be used like other variables

created inside the function (see Variable Scope, above).

There are two types of parameters: call by reference and call by value. Call by value means that the

calling variable value (or expression) is copied into the called variable. Changes made to the called

variable within the function do not affect the value of the calling variable. Call by reference means that

the calling variable value is changed if the called variable value is changed within the function.

Scalar (non-array) function variables can be either call by value or call by reference. Which type the

variable will be depends upon how it is called. If the calling variable has the "&" character in front of it,

then the variable is call by reference. If there is no "&" in front of the calling variable name then the

variable is call by value.

FN.DEF test(a)

a = 9

FN.RTN a

FN.END

a =1

PRINT test(a), a %will print: 9, 1

PRINT test(&a), a %will print: 9, 9

Array parameters are always call by reference.

FN.DEF test(a[])

a[1] = 9

FN.RTN a[1]

Original Author Paul Laughton, 2011 Page 77 De Re BASIC!

FN.END

DIM a[1]

a[1] = 1

PRINT test(a[]), a[1] % prints: 9, 9

Along with the function’s return value, you can use parameters passed by reference to return

information to a function’s caller.

Fn.rtn <sexp>|<nexp>

Causes the function to terminate execution and return the value of the return expression

<sexp>|<nexp>. The return expression type, string or number, must match the type of the function

name. Fn.rtn statements may appear anywhere in the program that they are needed.

A function can return only a single scalar value. It cannot return an array. It cannot return a data

structure (List, Stack, Bundle, or graphical object), but it can return a pointer to a data structure.

Note: You can also return information to a function’s caller through parameters passed by reference.

Fn.end

Ends the definition of a user-defined function. Every function definition must end with Fn.end.

When your function is running, executing the Fn.end statement causes the function to terminate and

return a default value. If the function type is numeric then the default return value is 0.0. A string

function returns the empty string ("").

Call <user_defined_function>

Executes the user-defined function. Any value returned by the function will be discarded.

The CALL command keyword is optional. Just as BASIC! can infer the LET command from a line that

starts with a variable, it can infer the CALL command from a line that starts with a function name.

For example, if you have defined a function like this:

FN.DEF MyFunction(x, y$, z)

< your code here >

FN.END

You can execute the function, ignoring its return value, with either of these statements:

CALL MyFunction(a, b$, c)

MyFunction(a, b$, c)

As with LET, you must use CALL if your function name starts with a BASIC! command keyword. It is also a

little faster to execute a function with CALL than to make BASIC! infer the command. See LET, above, for

details.

Original Author Paul Laughton, 2011 Page 78 De Re BASIC!

Program Control Commands

If / Then / Else / Elseif / Endif

The If commands provide for the conditional execution of blocks of statements. (Note: the braces { } are

not part of the command syntax. They are used only to show parts that are optional.)

IF <condition> { THEN }

 <statement>

 <statement>

...

 <statement>

{ ELSEIF<condition> { THEN }

 <statement>

 <statement>

...

 <statement> }

{ ELSE

 <statement>

 <statement>

...

 <statement> }

ENDIF

If commands may be nested to any depth. That is, any <statement> in a block may be a full If command

with all of its own <statement> blocks.

See the Sample Program file, F04_if_else.bas, for working examples of the If command.

If / Then / Else

If your conditional block(s) contain(s) only one statement, you may use a simpler form of the If

command, all one line:

IF <condition> THEN <statement> { ELSE <statement> }

In this form, Then is required, and there is no ElseIf or EndIf.

This form does not nest: neither <statement> may be an If command.

Because the single statements are not treated as blocks, this is the preferred form if either of the

embedded statements is a Break, Continue, or GoTo.

You may replace either <statement> with multiple statements separated by colon (":") characters. If you

do this, the set of multiple statements is treated as a block, and the single-line If/Then/Else becomes an

If/Then/Else/Endif. These two lines are exactly equivalent:

IF (x > y) THEN x = y : PRINT a$ ELSE y = x : PRINT b$

IF (x > y) : x = y : PRINT a$: ELSE : y = x : PRINT b$: ENDIF

Original Author Paul Laughton, 2011 Page 79 De Re BASIC!

Please note, if you wish to use colon-separated statements in this form of If/Then/Else, then you must

be careful to put spaces around the keywords Then and Else. Spaces are not significant to the BASIC!

interpreter, but they are needed by the pre-processor that converts the single-line If with multi-

statement blocks into a multi-line If with an EndIf.

For - To - Step / Next

FOR <nvar> = <nexp_1> TO <nexp_2> {STEP <nexp_3>}

 <statement>

 ...

 <statement>

NEXT {<nvar>}

Initially, <nvar> is assigned the value of <nexp_1> and compared to <nexp_2>. {STEP <nexp_3>} is

optional and may be omitted. If omitted then the Step value is 1.

If <nexp_3> is positive then

if <nvar> <= <nexp_2> then

the statements between the For and Next are executed.

If <nexp_3> is negative then

if <nvar> >= <nexp_2> then

the statements between the For and Next are executed.

When the Next statement is executed, <nvar> is incremented or decremented by the Step value and the

test is repeated. The <statement>s will be executed as long as the test is true. Each time, <nvar> is

compared to the original value of <nexp_2>; <nexp_2> is not re-evaluated with each Next.

Because the keywords To and Step are in the middle of the line with expressions that may include

variables, it is possible to confuse BASIC!. Remember that the interpreter does not see any spaces you

put between variables and keywords. FOR a TO m is seen as foratom. If there is any possibility of

confusion, use parentheses to tell BASIC! that a name is a variable:

FOR WinTop TO WinBot % ERROR: interpreted as "FOR win TO ptowinbot"

FOR (WinTop) TO WinBot % interpreted as intended

For-Next loops can be nested to any level. When For-Next loops are nested, any executed Next

statement will apply to the currently executing For statement. This is true no matter what the <nvar>

coded with the Next is. For all practical purposes, the <nvar> coded with the Next should be considered

to be nothing more than a comment.

It is possible to exit a For loop without Next or F_N.break. However, this can create subtle logic errors

that are hard to debug. If you set debug mode (see the Debug.on command), then BASIC! can help you

find these bugs. When your program ends and debug is on, if your program entered a For loop and did

not leave it cleanly, BASIC! shows a run-time error: "Program ended with FOR without NEXT".

Original Author Paul Laughton, 2011 Page 80 De Re BASIC!

F_N.continue

If this statement is executed within a For-Next loop, the rest of the current pass of the loop is skipped.

The Next statement executes immediately.

F_N.break

If this statement is executed within a For-Next loop, the rest of the current pass of the loop is skipped

and the loop is terminated. The statement immediately following the Next will be executed.

While <lexp> / Repeat

While <lexp>

 <statement>

 …

 <statement>

Repeat

The <statement>s between the While and Repeat will be executed as long as <lexp> evaluates as true.

The <statements>s will not be executed at all if <lexp> starts off false.

While-Repeat loops may be nested to any level. When While-Repeat are nested, any executed Repeat

statement will apply to inner most While loop.

W_R.continue

If this statement is executed within a While-Repeat loop, the rest of the current pass of the loop is

skipped. The Repeat statement executes immediately.

You can exit a While loop without Repeat or W_R.break. As with For-Next loops, this can create subtle

bugs, and BASIC! can help you find them. If debug is on, and your program is still in a While loop when it

ends, BASIC! shows a run-time error: "Program ended with WHILE without REPEAT".

W_R.break

If this statement is executed within a While-Repeat loop, the rest of the current pass of the loop is

skipped and the loop is terminated. The statement immediately following the Repeat will be executed.

Do / Until <lexp>

Do

 <statement>

 …

 <statement>

Until <lexp>

The statements between Do and Until will be executed until <lexp> is true. The <statement>s will always

be executed at least once.

Original Author Paul Laughton, 2011 Page 81 De Re BASIC!

Do-Until loops may be nested to any level. Any encountered Until statement will apply to the last

executed DO statement.

You can exit a Do loop without Until or D_U.break. As with For-Next loops, this can create subtle bugs,

and BASIC! can help you find them. If debug is on, and your program is still in a Do loop when it ends,

BASIC! shows a run-time error: "Program ended with DO without UNTIL".

D_U.continue

If this statement is executed within a Do-Until loop, the rest of the current pass of the loop is skipped.

The Until statement executes immediately.

D_U.break

If this statement is executed within a Do-Until loop, the rest of the current pass of the loop is skipped

and the loop is terminated. The statement immediately following the Until will be executed.

Labels, GOTO, GOSUB, and RETURN: Traditional BASIC

Before computer scientists invented the looping structures and user-defined functions described above,

program flow was controlled by GOTO, GOSUB, and RETURN statements. These statements are present

in BASIC!, too, mainly for compatibility with old BASIC dialects.

A GoTo statement is a one-way jump to another place in your program, identified by a Label. The

program goes to the Label and continues execution there.

A GoSub is similar, except that the Label is the beginning of a "Subroutine". The proram goes to the

Label, and executes there until it reaches a Return statement. Then it "returns", going back to where it

came from: the line after the GoSub statement.

Extensive use of the GoTo command in your program should be generally avoided. It can make code

hard to read and harder to debug. Instead, you should use structured elements like Do…Until,

While…Repeat, etc. in conjunction with the Break and Continue statements.

It is especially serious to use GoTo commands inside an If…Else…Endif, For…Next, or other structured

block, jumping to code outside of the block. Doing this consumes system resources and may corrupt

BASIC!’s internal data structures. This practice may lead your program to a run-time error:

Stack overflow. See manual about use of GOTO.

Label

A label is a word followed by the colon ":", character. Label names follow the same conventions as

variable names.

You may put a label on a line with other commands. Use two colons: one to signify that the word is a

label, and a second to separate the label from the other command(s) on the line.

Original Author Paul Laughton, 2011 Page 82 De Re BASIC!

Here: : IF ++a < 5 THEN GOTO here ELSE PRINT a

This program prints 5.0 and then stops.

The colon signifies that the word is a label, but it is not part of the label. Use the colon where the label is

defined. Do not use it in the GoTo or GoSub that jumps to the label.

For example:

This_is_a_Label:

@Label#3:

Loop: % The command "GoTo Loop" jumps to this line

 <statement>

 …

 <statement>

 GoTo Loop

GoTo <label>

The next statement that will be executed will be the statement following <label>.

GoTo <index_nexp>, <label>...

A "computed GOTO". The index expression is evaluated, rounded to the nearest integer, and used as an

index into the list of labels. The program jumps to the statement after the indexed label. If the index

does not select any label, the program continues at the statement after the GoTo.

For examples, see GoSub.

GoSub <label> / Return

The next statement that will be executed will be the statement following <label>.

The statements following the line beginning with <label> will continue to be executed until a Return

statement is encountered. Execution will then continue at the statement following the GoSub

statement.

Example:

Message$ = "Have a good day"

GOSUB xPrint

PRINT "Thank you"

<statement>

…

<statement>

END

xPrint:

PRINT Message$

RETURN

This will print:

Original Author Paul Laughton, 2011 Page 83 De Re BASIC!

Have a good day

Thank you

GoSub <index_nexp>, <label>... / Return

A "computed GOSUB". The index expression is evaluated, rounded to the nearest integer, and used as

an index into the list of labels. The program jumps to the statement after the indexed label. When the

next Return instruction executes, the program returns to the statement after this GoSub.

If the index does not select any label, the program continues to the statement after the GoSub. No

subroutine is executed, and no Return statement is expected.

Example:

d = FLOOR(6 * RND() + 1) % roll a six-sided die

GOSUB d, Side1, Side2, Side3, Side4, Side5, Side6

PRINT "Welcome back!"

END

Side1:

<subroutine for side 1>

RETURN

…

Side6:

<subroutine for side 1>

RETURN

Using Source Code from Multiple Files

Include FilePath

Before the program is run, the BASIC! pre-processor replaces any Include statements with the text from

the named file. You can use this to insert another BASIC! program file into your program at this point.

The program is not yet running, therefore the File Path cannot be a string expression.

INCLUDE functions/DrawGraph.bas

inserts the code from the file "<pref base drive>/rfo-basic/source/functions/DrawGraph.bas" into the

program.

The File Path may be written without quotation marks, as in the example above, or with quotes:

INCLUDE "functions/DrawGraph.bas"

If present, the quotes prevent the pre-processor from forcing the File Path to lower-case. Normally, this

does not change how BASIC! behaves, because the file system on the SD card is case-insensitive.

DrawGraph.bas and drawgraph.bas both refer to the same file.

However, if you build your program into a standalone Android application (see Appendix D), you can use

virtual files in the Android assets file system. File names in assets are case-sensitive, so you may need to

use quotes with the Include File Path.

Original Author Paul Laughton, 2011 Page 84 De Re BASIC!

Run <filename_sexp> {, <data_sexp>}

This command will terminate the running of the current program and then load and run the BASIC!

program named in the filename string expression. The filename is relative to BASIC’s "source/"

directory. If the filename is "program.bas" and your <pref base drive> is "/sdcard" (the default), then the

file "/sdcard/rfo-basic/source/program.bas" will be executed.

The optional data string expression provides for the passing of data to the next program. The passed

data can be accessed in the next program by referencing the special variable, ##$.

Run programs can be chained. A program loaded and run by means of the Run command can also run

another program file. This chain can be a long as needed.

When the last program in a Run chain ends, tapping the BACK key will display the original program in the

BASIC! Editor.

When a program ends with an error, the Editor tries to highlight the line where the error occurred. If the

program with the error was started by a Run command, the Editor does not have that program loaded.

Any highlighting that may be displayed is meaningless.

Switch Commands

The Switch commands may be used to replace nested if-then-else operations.

SW.BEGIN a

SW.CASE 1

<statement1>

…

<statement2>

SW.BREAK

SW.CASE 2, 4

<statement3>

…

<statement4>

SW.BREAK

SW.CASE < 0

<statement5>

…

<statement6>

SW.BREAK

SW.DEFAULT

 <statement7>

SW.END

The value of the argument of Sw.begin is compared to the argument of each Sw.case in order. If any

Sw.case matches the Sw.begin, the statements following the matching Sw.case is executed; if no

Sw.case matches, the statements after Sw.default are executed. Once BASIC! starts to execute the

Original Author Paul Laughton, 2011 Page 85 De Re BASIC!

statements of a Sw.case or Sw.default, it continues execution until it finds a Sw.break or the Sw.end,

ignoring any other Sw.case or Sw.default it may encounter. Sw.break causes a jump to the Sw.end.

In the example:
 if the value of a is 1, then <statement1> through <statement2> execute

 if the value of a is 2 or 4, then <statement3> through <statement4> execute

 if the value of a is less than 0, then <statement5> through <statement6> execute

 if a has any other value (3, or more than 4) then <statement7> executes.

A Sw.begin must be followed by a Sw.end, and all of the Sw.case and the Sw.default (if there is one) for

the same switch must appear between them. A set of switch commands is treated as a single unit, just

as if BASIC! were compiled.

Nesting Switch Operations

Switches can be nested. The block of statements following a Sw.case or Sw.default may include a full set

of switch commands. The nested switch begins with another Sw.begin and ends with another Sw.end,

with its own Sw.case and Sw.default statements in between. You can nest other switches inside nested

switches, for as many levels as you want.

If you prefer, you may put the inner switch operations in a labeled Gosub routine or a User-defined

Function, and put the Gosub or function call in the Sw.case or Sw.default block. This may make your

code easier to read, and it will also make the initial scan of the switch a little faster.

Sw.begin <exp>

Begins a switch operation. BASIC! scans forward until it reaches a Sw.end, locating all Sw.case,

Sw.break, and Sw.default statements between the Sw.begin and the Sw.end.

The numeric or string expression <exp> is evaluated. Its value is then compared to the expression(s) in

each Sw.case statement, in order. BASIC! uses to result of the compares to decide which statement to

execute next.

IF this condition is met: THEN jump to the statement

One or more Sw.Case statement(s) match the Sw.Begin after the first matching Sw.case.

No Sw.Case matches AND a Sw.default exists after the Sw.default.

No Sw.Case matches AND no Sw.default exists after the Sw.end.

There are two forms of Sw.case. You may freely mix both forms. Each form defines what it means to

"match" Sw.begin. Only the first matching Sw.case has any effect.

Sw.case <exp>, ...

This form of Sw.case provides a list of one or more expressions. A Sw.case of this form matches the

Sw.begin if the value of at least one of the expressions exactly equals the value of the Sw.begin

parameter. The type of the Sw.begin and Sw.case parameter(s), numeric or string, must match.

Original Author Paul Laughton, 2011 Page 86 De Re BASIC!

Sw.case <op><exp>

The first form of Sw.case, above, matches the Sw.begin if the value of any of its parameters equals the

value of the Sw.begin parameter. This second form can take only one expression <exp>, but it lets you

specify a different logical operator <op>. You may use any of these comparison operators:

 < <= > >= <>

For example:
SW.BEGIN a

SW.CASE < b % This SW.CASE matches if a < b

The expression <exp> may be arbitrarily complex. The whole expression is evaluated as if written:
<value of Sw.begin argument> <op> <exp>

Operator precedence is applied as usual.

Sw.break

This statement may be used to terminate the block of statements that follows Sw.case or Sw.default.

The Sw.break causes BASIC! to jump forward to the Sw.end statement, skipping everything between.

If no Sw.break is present in a particular Sw.case then subsequent Sw.cases will be executed until a

Sw.break or Sw.end is encountered.

Sw.default

This statements acts like a Sw.case that matches any value. If any Sw.case matches the Sw.begin value,

then the Sw.default is ignored, even if the matching Sw.case is after the Sw.default.

A switch is not required to have a Sw.default, but it must not have more than one. A second Sw.default

in the same switch is a syntax error.

Sw.end

The Sw.end terminates a switch operation. Sw.end must eventually follow a Sw.begin.

Interrupt Labels (Event Handlers)

You can perform physical actions that tell your BASIC! program to do something. When you touch the

screen or press a key you cause an event. These events are asynchronous, that is, they happen at times

your program cannot predict. BASIC! detects some events so your program can respond to them.

BASIC! handles events as interrupts. Each event that BASIC! recognizes has a unique Interrupt Label.

When an event occurs, BASIC! looks for the Interrupt Label that matches the event.

 If you have not written that Interrupt Label into your program, the event is ignored and your

program goes on running as if nothing happened.

 If you have included the right Interrupt Label for the event, BASIC! jumps to that label and continues

execution at the line after the label. This is called trapping the event.

Original Author Paul Laughton, 2011 Page 87 De Re BASIC!

BASIC! does not necessarily respond to the event as soon as it occurs. The statement that is executing

when the event occurs is allowed to complete, then BASIC! jumps to the Interrupt Label.

When you use an Interrupt Label to trap an event, BASIC! executes instructions until it finds a Resume

command that matches the Interrupt Label. During that time, it records other events but it does not

respond to them. The block of code between the Interrupt Label and the matching Resume may be

called an Interrupt Service Routine (ISR) or, if you prefer, an Event Handler.

When BASIC! executes the event’s Resume command, it resumes normal execution.
 BASIC! jumps back to where it was running when the interrupt occurred.

 BASIC! again responds to other events, including any that occurred while it was handling an event.

An Interrupt Label looks and behaves just like any other label in BASIC!. However, you must not execute

any of the Resume commands except to finish an event’s handler.

All Interrupt Labels

BASIC! supports trapping of the following events. These interrupt labels and their Resume commands

are described in various parts of this manual.

 OnBackground: Background.resume

 OnBackKey: Back.resume

 OnBtReadReady: Bt.onReadReady.resume

 OnConsoleTouch: ConsoleTouch.resume

 OnError: None (not a true event, see OnError:, below)

 OnGrTouch: Gr.onGrTouch.resume

 OnKbChange: Kb.resume

 OnKeyPress: Key.resume

 OnLowMemory: LowMemory.resume

 OnMenuKey: MenuKey.resume

 OnTimer: Timer.resume

OnError:

Special interrupt label that traps a run-time error as if it were an event, except that:
 OnError: has no matching Resume command. You can use GoTo to jump anywhere in your program.

 OnError: is not locked out by other interrupts.

 OnError: does not lock out other interrupts.

If a BASIC! program does not have an OnError: label and an error occurs while the program is running,

an error message is printed to the Output Console and the program stops running.

If the program does have an OnError: label, BASIC! does not stop on an error. Instead, it jumps to the

OnError: label (see "Interrupt Labels", above). The error message is not printed, but it can be retrieved

by the GETERROR$() function.

Original Author Paul Laughton, 2011 Page 88 De Re BASIC!

Be careful. An infinite loop will occur if a run-time error occurs within the OnError: code. You should not

place an OnError: label into your program until the program is fully debugged. Premature use of

OnError: will make the program difficult to debug.

OnConsoleTouch:

Interrupt label that traps a tap on a line printed on the Output Console. BASIC! executes the statements

following the OnConsoleTouch: label until it reaches a ConsoleTouch.resume. Note that you must touch

a line written by a PRINT command, although it may be blank. BASIC! Ignores any touch in the empty

area of the screen below the printed lines.

After touching a Console line, you may use the Console.Line.Touched command to determine what line

of text was touched.

This label allows the user to interrupt an executing BASIC! program in Console mode (not in Graphics

mode). A common reason for such an interrupt would be to have the program request input via an

INPUT statement. See the Sample File, f35_bluetooth.bas, for an example of this.

To detect screen touches while in graphics mode, use OnGrTouch:.

ConsoleTouch.resume

Resumes execution at the point in the BASIC! program where the OnConsoleTouch: interrupt occurred.

OnBackKey:

Interrupt label that traps the BACK key. BASIC! executes the statements following the OnBackKey: label

until it reaches a Back.resume. If a BASIC! program does not have an OnBackKey: label, the BACK key

normally halts program execution.

If you trap the BACK key with OnBackKey:, the BACK key does not stop your program. You should either

terminate the run in the OnBackKey: code or provide another way for the user to tell your program to

stop, especially if the program is in Graphics mode where there is no menu. If you do not then there will

be no stopping the program (other than using Android Settings or a task killer application).

Back.resume

Resumes execution at the point in the BASIC! program where the OnBackKey: interrupt occurred.

OnMenuKey:

Interrupt label that traps the MENU key. BASIC! executes the statements following the OnMenuKey:

label until it reaches a MenuKey.resume.

MenuKey.resume

Resumes execution at the point in the BASIC! program where the OnMenuKey: interrupt occurred.

OnKeyPress:

Interrupt label that traps a tap on any key. BASIC! executes the statements following the OnKeyPress:

label until it reaches a Key.resume.

Original Author Paul Laughton, 2011 Page 89 De Re BASIC!

Key.resume

Resumes execution at the point in the BASIC! program where the OnKeyPress: interrupt occurred.

OnLowMemory:

Interrupt label that traps the Android "low memory" warning. BASIC! executes the program lines

between the OnLowMemory: interrupt label and the LowMemory.resume command.

If Android is running out of memory, it may kill applications running in the background, but first it will

broadcast a "low memory" warning to all applications. If you do not have an OnLowMemory: label in

your program, you will see "Warning: Low Memory" printed on the Console.

LowMemory.resume

Resumes execution at the point in the BASIC! program where the OnLowMemory: interrupt occured.

End{ <msg_sexp>}

Prints a message and stops the execution of the program. The default message in "END". You can use

the optional <msg_sexp> argument to specify a different message. The empty string ("") prints nothing,

not even a blank line. The End statement always stops execution, even if the statement has an error.

End statements may be placed anywhere in the program.

Exit

Causes BASIC! to stop running and exit to the Android home screen.

READ – DATA – RESTORE Commands

These commands approximate the READ, DATA and RESTORE commands of Dartmouth Basic.

Read.data <number>|<string>{,<number>|<string>...,<number>|<string>}

Provides the data value(s) to be read with Read.next.

Read.data statements may appear anywhere in the program. You may have as many Read.data

statements as you need.

Example:
Read.data 1,2,3,"a","b","c"

Read.data is equivalent to the DATA statement in Dartmouth Basic.

Read.next <var>, ...

Reads the data pointed to by the internal NEXT pointer into the next variables. The NEXT pointer is

initialized to "1" and is incremented by one each time a new value is read. Data values are read in the

sequence in which they appeared in the program Read.data statement(s).

Original Author Paul Laughton, 2011 Page 90 De Re BASIC!

The data type (number or string) of the variable must match the data type pointed by the NEXT pointer.

Example:
Read.next a,b,c,c$

Read.next d$,e$

Read.next is equivalent to the READ statement in Dartmouth Basic

Read.from <nexp>

Sets the internal NEXT pointer to the value of the expression. This command can be set to randomly

access the data.

The command Read.from 1 is equivalent to the RESTORE command in Dartmouth Basic.

Debug Commands

The debug commands help you debug your program. The Debug.on command controls execution of all

the debug commands. The debug commands are ignored unless the Debug.on command has been

previously executed. This means that you can leave all your debug commands in your program and be

assured that they will not execute unless you turn debugging on with Debug.on.

Debug.on

Turns on debug mode. All debug commands will be executed when in the debug mode.

Debug.on also enables a simple debugging aid built into BASIC!. If debug is on, and your program

entered a loop but did not exit the loop cleanly, you will get a run-time error. See the looping commands

(For, While, and Do) for details.

Debug.off

Turns off debug mode. All debug commands (except Debug.on) will be ignored. When your program

exits, the broken-loop checks are not performed.

Debug.echo.on

Turns on Echo mode. Each line of the running BASIC! program is printed before it is executed. This can

be of great help in debugging. The last few lines executed are usually the cause of program problems.

The Echo mode is turned off by either the Debug.echo.off or the Debug.off commands.

Echo.on

Same as Debug.echo.on.

Debug.echo.off

Turns off the Echo mode.

Original Author Paul Laughton, 2011 Page 91 De Re BASIC!

Echo.off

Same as Debug.echo.off.

Debug.print

This command is exactly the same as the Print command except that the print will occur only while in

the debug mode.

Debug.dump.scalars

Prints a list of all the Scalar variable names and values. Scalar variables are the variable names that are

not Arrays or Functions. Among other things, this command will help expose misspelled variable names.

Debug.dump.array Array[]

Dumps the contents of the specified array. If the array is multidimensional the entire array will be

dumped in a linear fashion.

Debug.dump.bundle <bundlePtr_nexp>

Dumps the Bundle pointed to by the Bundle Pointer numeric expression.

Debug.dump.list <listPtr_nexp>

Dumps the List pointed to by the List Pointer numeric expression.

Debug.dump.stack <stackPtr_nexp>

Dumps the Stack pointed to by the Stack Pointer numeric expression.

Debug.show.scalars

Pauses the execution of the program and displays a dialog box. The dialog box prints a list of all the

Scalar variable names and values, the line number of the program line just executed and the text of that

line. Scalar variables are the variable names that are not Arrays or Functions. Among other things, this

command will help expose misspelled variable names.

For a description of the dialog box controls, see the Debug.show command, below.

Debug.show.array Array[]

Pauses the execution of the program and displays a dialog box. The dialog box prints the contents of the

specified array, the line number of the program line just executed and the text of that line. If the array is

multidimensional the entire array will be displayed in a linear fashion.

For a description of the dialog box controls, see the Debug.show command, below.

Original Author Paul Laughton, 2011 Page 92 De Re BASIC!

Debug.show.bundle <bundlePtr_nexp>

Pauses the execution of the program and displays a dialog box. The dialog box prints the Bundle pointed

to by the Bundle Pointer numeric expression, the line number of the program line just executed and the

text of that line.

For a description of the dialog box controls, see the Debug.show command, below.

Debug.show.list <listPtr_nexp>

Pauses the execution of the program and displays a dialog box. The dialog box prints the List pointed to

by the List Pointer numeric expression, the line number of the program line just executed and the text of

that line.

For a description of the dialog box controls, see the Debug.show command, below.

Debug.show.stack <stackPtr_nexp>

Pauses the execution of the program and displays a dialog box. The dialog box prints the Stack pointed

to by the Stack Pointer numeric expression, the line number of the program line just executed and the

text of that line.

For a description of the dialog box controls, see the Debug.show command, below.

Debug.watch var, ...

Gives a list of Scalar variables (not arrays) to be watched. The values of these variables will be shown

when the Debug.show.watch command is executed. This command is accumulative, meaning that

subsequent calls will add new variables into the watch list.

Debug.show.watch

Pauses the execution of the program and displays a dialog box. The dialog box lists the values of the

variables being watched, the line number of the program line just executed and the text of that line.

For a description of the dialog box controls, see the Debug.show command, below.

Debug.show.program

Pauses the execution of the program and displays a dialog box. The dialog box shows the entire

program, with line numbers, as well as a marker pointing to the last line that was executed.

Note: the debugger does not stop on a function call. The first line of the function is executed and the

marker points to that line. When a Fn.rtn or Fn.end executes, the marker points to the function call.

For a description of the dialog box controls, see the Debug.show command, below.

Original Author Paul Laughton, 2011 Page 93 De Re BASIC!

Debug.show

Pauses the execution of the program and displays a dialog box. The dialog box will contain the result of

the last Debug.show.<command> used or by default Debug.show.program.

There are three buttons in the dialog:

Resume: Resumes execution.

Step: Executes the next line while continuing to display the dialog box.

View Swap: Opens a new dialog that allows you to choose a different Debug View.

The BACK key closes the debug dialog and stops your program.

Fonts

Your program can use fonts loaded from files. If compiled into a standalone APK, a program can use

fonts loaded from assets or resources contained in the APK. This is a new feature of BASIC! that is not

yet fully developed. New ways to use these fonts will be coming soon.

At present, the only way to use a loaded font is with the Gr.Text.SetFont command.

Font.load <font_ptr_nvar>, <filename_sexp>

Loads a font from the file named by the <filename_sexp>. Returns a pointer to the font in the variable

<font_ptr_nvar>. This pointer can be used to refer to the loaded font, for example, in a Gr.Text.SetFont

command.

If the font file can not be loaded, the pointer will be set to -1. You can call the GETERROR$() function to

get an error message.

Font.delete {<font_ptr_nexp>}

Deletes the previously loaded font specified by the font pointer parameter <font_ptr_nexp>. Any

variable that points to the deleted font becomes an invalid font pointer. An attempt to use the deleted

font is an error. It is not an error to delete the same font again.

If the font pointer is omitted, the command deletes the most-recently loaded font that has not already

been deleted. Repeating this operation deletes loaded fonts in last-to-first order. It is not an error to do

this when there are no fonts loaded.

Font.clear

Clears the font list, deleting all previously loaded fonts. Any variable that points to a font becomes an

invalid font pointer. An attempt to use any of the deleted fonts is an error.

Note: Font.delete leaves a marker in the font list, so pointers to other fonts will not be affected. That is

why you can Font.delete the same font more than once. Font.clear clears the entire list, making all font

pointer variables invalid. After executing Font.clear, you can’t Font.delete any of the cleared fonts.

Original Author Paul Laughton, 2011 Page 94 De Re BASIC!

Console I/O

Output Console

BASIC! has three types of output screens: The Output Console, the Graphics Screen, and the HTML

Screen. This section deals with the Output Console. See the section on Graphics for information about

the Graphics Screen. See the section on HTML for information aobut the HTML screen.

Information is printed to screen using the Print command. BASIC! Run-time error messages are also

displayed on this screen.

There is no random access to locations on this screen. Lines are printed one line after the other.

Although no line numbers are displayed, lines are numbered sequentially as they are printed, starting

with 1. These line numbers refer to lines of text output, not to locations on the screen.

Print {<exp> {,|;}} ...

? {<exp> {,|;}} ...

Evaluates the expression(s) <exp> and prints the result(s) to the Output Console. You can use a question

mark (?) in place of the command keyword Print.

If the comma (,) separator follows an expression then a comma and a space will be printed after the

value of the expression.

If the semicolon (;) separator is used then nothing will separate the values of the expressions.

If the semicolon is at the end of the line, the output will not be printed until a Print command without a

semicolon at the end is executed.

Print with no parameters prints a newline.

Examples:

PRINT "New", "Message" % Prints: New, Message

PRINT "New";" Message" % Prints: New Message

PRINT "New" + " Message" % Prints: New Message

? 100-1; " Luftballons" % Prints: 99.0 Luftballons

? FORMAT$("##", 99); " Luftballons" % Prints: 99 Luftballons

PRINT "A";"B";"C"; % Prints: nothing

PRINT "D";"E";"F" % Prints: ABCDEF

Print with User-Defined Functions

Note: Some commands, such as Print, can operate on either strings or numbers. Sometimes it has to try

both ways before it knows what to do. First it will try to evaluate an expression as a number. If that fails,

it will try to evaluate the same expression as a string.

Original Author Paul Laughton, 2011 Page 95 De Re BASIC!

If this happens, and the expression includes a function, the function will be called twice. If the function

has side-effects, such as printing to the console, writing to a file, or changing a global parameter, the

side-effect action will also happen twice.

Eventually this problem should be fixed in BASIC!, but until then you should be careful not to call a

function, especially a user-defined function, as part of a Print command. Instead, assign the return value

of the function to a variable, and then Print the variable. An assignment statement always knows what

type of expression to evaluate, so it never evaluates twice.

! Do this:

y = MyFunction(x)

Print y

! NOT this:

Print MyFunction(x)

Cls

Clears the Output Console screen.

Console.front

Brings the Output Console to the front where the user can see it.

If BASIC! is running in the background with no screen visible, this command brings it to the foreground.

If you have a different application running in the foreground, it will be pushed to the background.

If BASIC! is running in the foreground, but the Graphics or HTML screen is in the foreground, this

command brings the Console to the foreground. BASIC! remains in Graphics or HTML mode.

Console.line.count <count_nvar>

Sets the return variable <count_nvar> to the number of lines written to the Console. This command

waits for any pending Console writes to complete before reporting the count.

Console.line.text <line_nexp>, <text_svar>

The text of the specified line number of the Console is copied to the <text_svar>.

Console.line.touched <line_nvar> {, <press_lvar>}

After an OnConsoleTouch interrupt indicates the user has touched the console, this command returns

information about the touch.

The number of the line that the user touched is returned in the <line_nvar>.

If the optional <press_lvar> is present, the type of user touch–a short tap or a long press–is returned in

the <press_lvar>. Its value will be 0 (false) if the touch was a short tap. Its value will be 1 (true) if the

touch was a long press.

Console.save <filename_sexp>

The current contents of the Console is saved to the text file specified by the filename string expression.

Original Author Paul Laughton, 2011 Page 96 De Re BASIC!

Console.title { <title_sexp>}

Changes the title of the console window. If the <title_sexp> parameter is omitted, the title is changed to

the default title, "BASIC! Program Output".

User Input and Interaction

This set of commands lets you interact with your programs.

At the lowest level, you can use Inkey$ to read raw keystrokes. You control display of the virtual

keyboard with Kb.hide, Kb.show, and Kb.toggle.

With the Select command you present information in a list format that looks very much like the Output

Console. If you prefer, you can use Dialog.Select to present the same information in a new dialog

window. Either way, when your program runs, you select an item from the list by tapping a line.

The other commands in this group all pop up new windows.

Input lets you type a number or a line of text as input to your program. Dialog.message presents a

message with a set of buttons to let you tell your program what to do next.

Popup is different. It presents information in a small, temporary display. It is not interactive and requires

no management in your program. You pop it up and forget it.

The last two commands in this group present another kind of dialog window. The Text.input command

operates on larger blocks of text, and TGet simulates terminal I/O.

Dialog.message {<title_sexp>}, {<message_sexp>}, <sel_nvar> {, <button1_sexp>{,

<button2_sexp>{, <button3_sexp>}}}

Generates a dialog box with a title, a message, and up to three buttons. When the user taps a button,

the number of the selected button is returned in <sel_nvar>. If the user taps the screen outside of the

message dialog or presses the BACK key, then the returned value is 0.

The string <title_sexp> becomes the title of the dialog box. The string <message_sexp> is displayed in

the body of the dialog, above the buttons. The strings <button1_sexp>, <button2_sexp>, and

<button3_sexp> provide the labels on the buttons.

You may have 0, 1, 2, or 3 buttons. On most devices, the buttons are numbered from right-to-left,

because Android style guides recommend the positive action on the right and the negative action on the

left. Some devices differ. On compliant devices, tapping the right-most button returns 1.

All of the parameters except the selection index variable <sel_nvar> are optional. If any parameter is

omitted, the corresponding part of the message dialog is not displayed. Use commas to indicate omitted

parameters (see Optional Parameters).

Examples:

Dialog.Message "Hey, you!", "Is this ok?", ok, "Sure thing!", "Don’t care", "No way!"

Original Author Paul Laughton, 2011 Page 97 De Re BASIC!

Dialog.Message "Continue?", , go, "YES", "NO"

Dialog.Message , "Continue?", go, "YES", "NO"

Dialog.Message , , b

The first command displays a full dialog with a title, a message, and three buttons.

The second command displays a box with a title and two buttons – note that the YES button will be on

the right and the NO button on the left. The third displays the same information, but it looks a little

different because the text is displayed as the message and not as the title. Note the commas.

The fourth command displays nothing at all. The screen dims and your program waits for a tap or the

BACK key with no feedback to tell the user what to do.

Dialog.select <sel_nvar>, <Array$[]>|<list_nexp> {,<title_sexp>}

Generates a dialog box with a list of choices for the user. When the user taps a list item, the index of the

selected line is returned in the <sel_nvar>. If the user taps the screen outside of the selection dialog or

presses the BACK key, then the returned value is 0.

<Array$[]> is a string array that holds the list of items to be selected. The array is specified without an

index but must have been previously dimensioned or loaded via Array.load.

As an alternative to an array, a string-type list may be specified in the <list_nexp>.

The <title_sexp> is an optional string expression that will be displayed at the top of the selection dialog.

If the parameter is not present, or the expression evaluates to an empty string (""), the dialog box will

be displayed with no title.

This command also accepts optional <message_sexp> and <press_lvar> parameters like those described

in the Select command, but they should not be used. The <message_sexp> is ignored and the

<press_lvar> will always be set to 0.

Input {<prompt_sexp>}, <result_var>{, {<default_exp>}{, <canceled_nvar>}}

Generates a dialog box with an input area and an OK button. When the user taps the button, the value

in the input area is written to the variable <result_var>.

The <prompt_sexp> will become the dialog box title. If the prompt expression is empty ("") or omitted,

the dialog box will be drawn without a title area.

If the return variable <result_var> is numeric, the input must be numeric, so the only key taps that will

be accepted are 0-9, "+", "-" and ".". If <result_var> is a string variable, the input may be any string.

If a <default_exp> is given then its value will be placed into the input area of the dialog box. The default

expression type must match the <result_var> type.

The variable <canceled_nvar> controls what happens if the user cancels the dialog, either by tapping the

BACK key or by touching anywhere outside of the dialog box.

Original Author Paul Laughton, 2011 Page 98 De Re BASIC!

If you provide a <canceled_nvar>, its value is set to false (0) if the user taps the OK button, and true (1)

if the users cancels the dialog.

If you do not provide a <canceled_nvar>, a canceled dialog is reported as an error. Unless there is an

"OnError:" the user will see the messages:

Input dialog cancelled

Execution halted

If there is an "OnError:" label, execution will resume at the statement following the label.

The <result_var> parameter is required. All others are optional. These are all valid:

INPUT "prompt", result$, "default", isCanceled

INPUT , result$, "default"

INPUT "prompt", result$, , isCanceled

INPUT "prompt", result$

INPUT , result$

Note the use of commas as parameter placeholders (see Optional Parameters).

Inkey$ <svar>

Reports key taps for the a-z, 0-9, Space and the D-Pad keys. The key value is returned in <svar>.

The D-Pad keys are reported as "up", "down", "left", "right" and "go". If any key other than those have

been tapped, the string "key nn" will be returned. Where nn will be the Android key code for that key.

If no key has been tapped, the "@" character is returned in <svar>.

Rapid key taps are buffered in case they come faster than the BASIC! program can handle them.

Popup <message_sexp> {{, <x_nexp>}{, <y_nexp>}{, <duration_lexp>}}

Pops up a small message for a limited duration. The message is <message_sexp>.

All of the parameters except the message are optional. If omitted, their default values are 0. Use

commas to indicate omitted parameters (see Optional Parameters).

The simplest form of the Popup command, Popup "Hello!", displays the message in the center of the

screen for two seconds.

The default location for the Popup is the center of the screen. The optional <x_nexp> and <y_nexp>

parameters give a displacement from the center. The values may be negative.

Select the duration of the Popup, either 2 seconds or 4 seconds, with the optional <duration_lexp> "long

flag". If the flag is false (the expression evaluates to 0) the message is visible for 2 seconds. If the flag is

true (non-zero) the message is visible for 4 seconds. If the flag is omitted the duration is short.

Original Author Paul Laughton, 2011 Page 99 De Re BASIC!

Select <sel_nvar>, <Array$[]>|<list_nexp> {,<title_sexp> {, <message_sexp> } }

{,<press_lvar> }

The Select command generates a new screen with a list of choices for the user. When the user taps a

screen line, the index of the selected line is returned in the <sel_nvar>. If the user presses the BACK key,

then the returned value is 0.

<Array$[]> is a string array that holds the list of items to be selected. The array is specified without an

index but must have been previously dimensioned, loaded via Array.load, or created by another

command.

As an alternative to an array, a string-type list may be specified in the <list_nexp>.

The <title_sexp> is an optional string expression that is placed into the title bar at the top of the

selection screen. If the parameter is not present, the screen displays a default title. If the expression

evaluates to an empty string ("") the title is blank.

The <message_sexp> is an optional string expression that is displayed in a short Popup message. If the

message is an empty string ("") there is no Popup. If the parameter is absent, the <title_sexp> string is

used instead, but if the <title_sexp> is also missing or empty, there is no Popup.

The <press_lvar> is optional. If present, the type of user tap—long or short—is returned in <press_lvar>.

The value returned is 0 (false) if the user selected the item with a short tap. The value returned is 1

(true) if the user selected the item with a long press.

Use commas to indicate omitted optional parameters (see Optional Parameters).

Text.input <svar>{, { <text_sexp>} , <title_sexp> }

This command is similar to "Input" except that it is used to input and/or edit a large quantity of text. It

opens a new window with scroll bars and full text editing capabilities. You may set the title of the new

window with the optional <title_sexp> parameter.

If the optional <text_sexp> is present then that text is loaded into the text input window for editing. If

<text_sexp> is not present then the text.input text area will be empty. If <title_sexp> is needed but

text.input text area is to be initially empty, use two commas to indicate the <sexp> specifies the title and

not the initial text.

When done editing, tap the Finish button. The edited text is returned in <svar>.

If you tap the BACK key then all text editing is discarded. <svar> returns the original <sexp> text.

The following example grabs the Sample Program file, f01_commands.bas, to string s$. It then sends s$

to text.input for editing. The result of the edit is returned in string r$. r$ is then printed to console.

GRABFILE s$, "../source/ Sample_Programs/f01_commands.bas"

TEXT.INPUT r$,s$

PRINT r$

Original Author Paul Laughton, 2011 Page 100 De Re BASIC!

END

TGet <result_svar>, <prompt_sexp> {, <title_sexp>}

Simulates a terminal. The current contents of the Output Console is displayed in a new window. The last

line displayed starts with the prompt string followed by the cursor. The user types in the input and taps

enter. The characters that the user typed in is returned in <result_svar>. The prompt and response are

displayed on the Output Console.

You may set the title of the text input window with the optional <title_sexp> parameter.

Kb.hide

Hides the soft keyboard.

If the keyboard is showing, and you have an OnKbChange: interrupt label, BASIC! will jump to your

interrupt label when the keyboard closes.

The soft keyboard is always hidden when your program starts running, regardless of whether it is

showing in the Editor.

Note: BASIC! automatically hides the soft keyboard when you change screens. For example, if the

keyboard is showing over the Output Console, and you execute Gr.open to start Graphics Mode, the

keyboard is hidden. The keyboard will not be showing when you exit Graphics Mode and return to the

Console. Similarly, if you show the keyboard over your Graphics screen and you execute Gr.close to

return to the Console, the keyboard is hidden.

If you have an OnKbChange: interrupt label, automatically hiding the keyboard does not trigger a jump

to the interrupt label.

Kb.show

Shows the soft keyboard.

If the keyboard is not showing, and you have an OnKbChange: interrupt label, BASIC! will jump to your

interrupt label when the keyboard opens.

When the soft keyboard is showing, its keys may be read using the Inkey$ command. The command may

not work in devices with hard or slide-out keyboards.

You cannot show the soft keyboard over the Output Console unless you first Print to the Console.

Kb.toggle

Toggles the showing or hiding of the soft keyboard. If the keyboard is being shown, it will be hidden. If it

is hidden, it will be shown.

Kb.showing <lvar>

Reports the visibility of the soft keyboard. If the keyboard is showing, the <lvar> is set to 1.0 (true),

otherwise the <lvar> is set to 0.0 (false).

Original Author Paul Laughton, 2011 Page 101 De Re BASIC!

This command reports only the status of the keyboard shown by Kb.show. For example, the keyboard

attached to the Input command dialog box cannot be controlled by Kb.show or Kb.hide and its status is

not reported by Kb.showing.

OnKbChange:

If you show a soft keyboard with Kb.show, or close that same keyboard with Kb.hide or by tapping the

BACK key, the change takes some time. The keyboard may open or close a few hundred milliseconds

after it is requested. Kb.show and Kb.hide block until the change is complete, but your program does

not know when you tap the BACK key.

If you have an OnKbChange: interrupt label in your program, then when the keyboard changes as just

described, BASIC! interrupts your program and executes the statements after the interrupt label.

To return control to where the interrupt occurred, execute Kb.resume in your interrupt handler.

This interrupt occurs only for keyboards you show with Kb.show. Keyboards attached to other screens,

such as TGet or the Input dialog box, do not cause OnKbChange: interrupts.

Kb.resume

Resume program execution at the point where the OnKbChange: interrupt occurred.

When an interrupt occurs, no other interrupt can occur (except OnError:) until the corresponding

resume executes.

The Soft Keyboard and the BACK Key

If you show a soft keyboard with Kb.show, and you tap the BACK key, the keyboard closes. The current

screen (Console or Graphics screen) does not close. BASIC! does not trap the keypress with either

OnBackKey: or OnKeyPress:. You can use the OnKbChange: interrupt label to be notified that the

keyboard closed.

Working with Files

Files on Android devices are stored on more or more storage devices. BASIC! uses one of these devices

as its base drive. In most cases, the base drive is the SD card, seen on most Android devices as the

directory "/sdcard". You can select a different base drive in the Menu->Preferences item BASE DRIVE. In

this manual, the notation <pref base drive> refers to the base drive you selected in Preferences.

BASIC! can work with files anywhere on the base drive, but most file operations are done in BASIC!’s

base directory. Except when the user creates a standalone apk file (see Appendix D), the base directory

is <pref base drive>/rfo-basic. All filenames (but not URLs) are relative to a subdirectory of the base

drive.

Paths Explained

A path describes where a file or directory is located relative to some other file or directory.

Original Author Paul Laughton, 2011 Page 102 De Re BASIC!

BASIC! files are stored in subdirectories of the base directory, "<pref base drive>/rfo-basic/". Files are

grouped by type, as follows:

BASIC! program files are in: "rfo-basic/source/"

BASIC! data files are in:"rfo-basic/data/"

BASIC! SQLite databases are in:"rfo-basic/databases/"

All of the BASIC! file I/O commands assume a certain default path. The default path depends on the type

of file each command expects to handle. The INCLUDE and RUN commands expect to load program files,

so they look in "rfo-basic/source/". SQLite operations look for database files in "rfo-basic/databases/".

All other file operations look for data files in "rfo-basic/data/".

If you give a filename to a file command, it looks for that file in the default directory for commands of

that type. If you want to work with a file that is not in that directory, you will have to specify a path to

the appropriate directory.

The "../" path notation means to back up from the current directory by one level. The default path for

data files is "<pref base drive>/rfo-basic/data/". The path "../source/" tells BASIC! to back up to the

"<pref base drive>/rfo-basic/" directory and look into the "source/" directory.

The default <pref base drive> is the SD card, "/sdcard". If you want to work with a file in the root

directory of the SD card, the path from the default path is would be: "../../" This tells BASIC! to back up

two levels from "/sdcard/rfo-basic/data/" to "/sdcard/". On most Android devices "sdcard" is a symbolic

link (shortcut) to a longer path name, such as "/mnt/sdcard" or "/storage/sdcard0". If you want to work

with a file in the root directory of the Android device, "/", you can use the FILE.ROOT command to get

the full path of the <pref base drive>.

All of these paths get you to a directory where you want to read, write, or create a file. To access that

specific file, you add the filename to the path.

 In order to read the file "names.txt" in "/sdcard/rfo-basic/data/", the path would be

"names.txt".

 In order to read the program file "sines.bas" in "/sdcard/rfo-basic/source", the path would be

"../source/sines.bas".

 In order to access the music file "rain.mp3" in "/sdcard/music/", the path would be

"../../music/rain.mp3".

Paths and Case-sensitivity

While the Android file system is normally case-sensitive. However, the FAT file system, often used on SD

cards, memory sticks, etc., is case-insensitive. When handling files on these devices, Android – and

therefore BASIC! – can not differentiate between names that differ only in case. In your BASIC! program,

the two paths "../../music/rain.mp3" and "../../MUSIC/Rain.MP3" will both access the same file.

Original Author Paul Laughton, 2011 Page 103 De Re BASIC!

The rules change if you compile the same BASIC! program into a stand-alone apk (see Appendix D). The

file system inside the apk is case-sensitive. The paths "../../music/rain.mp3" and"../../MUSIC/Rain.MP3"

access different files. If the actual path in your build project is "Assets/<project>/MUSIC/Rain.MP3",

then using the second path would succeed, but the first path would fail.

To prevent any error, it is good practice to match case exactly in file paths and names.

Mark and Mark Limit

Note: This is an advanced file management technique that you will rarely need to use. However see the

note below about Out of Memory errors when reading very large files.

Every file has a mark and a mark limit. The mark is a position, and the mark limit is a size. As you read a

file, its data is copied into a buffer. The buffer starts at the mark, and its length is the mark limit. BASIC!

uses the buffer to allow you to reposition within the file. You are really repositioning within the buffer.

If you do not mark a file, then the first time you read it or set a position in it, the mark is set at position 1

and the mark limit is set to the size of the file. This allows you to position and read anywhere in the file.

The Text.position.mark and Byte.position.mark commands override the default mark and mark limit.

You can change the mark and mark limit as often as you like, but there is only one mark in a file.

You cannot set a position before the mark. If you try, the file will be positioned at the mark. You will not

be notified that the current position is different from what you requested, but you can use

Text/Byte.position.get to determine the real position. Since the default mark position is 1, you can

position anywhere if you never set a mark.

You cannot make the buffer smaller. If you want the buffer to be smaller than the file, you must execute

Text/Byte.position.mark before reading the file or setting a position. The smallest buffer size available is

8096 bytes, but it is not an error to specify a smaller number. Since the default mark limit is the file size,

you can position anywhere if you never set a mark limit.

If you read or position past the end of the buffer (more than marklimit bytes beyond the the mark), the

mark is invalid. It is an error to try to move the position backward when the mark is invalid. You will see

the error message "Invalid mark". Since the default buffer is the whole file, you will never see this error

if you never set a mark.

There is only one condition that requires you to use this command. If you open a very large file, the

default buffer size may be too large. Reading or positioning to the end of the file may cause an Out Of

Memory error. To avoid this error, your must use Text.position.mark to reduce the buffer size.

Original Author Paul Laughton, 2011 Page 104 De Re BASIC!

File Commands

File.delete <lvar>, <path_sexp>

The file or directory at <path_sexp> will be deleted, if it exists. If the file or directory did not exist before

the Delete, the <lvar> will contain zero. If the file or directory did exist and was deleted, the <lvar> will

be returned as not zero.

The default path is "<pref base drive>/rfo-basic/data/".

File.dir <path_sexp>, Array$[] {,<dirmark_sexp>}

Returns the names of the files and directories in the path specified by <path_sexp>. The path is relative

to "<pref base drive>/rfo-basic/data/".

The names are placed into Array$[]. The array is sorted alphabetically with the directories at the top of

the list. If the array exists, it is overwritten, otherwise a new array is created. The result is always a one-

dimensional array

A directory is identified by a marker appended to its name. The default marker is the string "(d)". You

can change the marker with the optional directory mark parameter <dirmark_sexp>. If you do not want

directories to be marked, set <dirmark_sexp> to an empty string, "".

Dir is a valid alias for this command.

File.exists <lvar>, <path_sexp>

Reports if the <path_sexp> directory or file exists. If the directory or file does not exist, the <lvar> will

contain zero. If the file or directory does exist, the <lvar> will be returned as not zero.

The default path is "<pref base drive>/rfo-basic/data/".

File.mkdir <path_sexp>

Before you can use a directory, the directory must exist. Use this command to create a directory named

by the path string <path_sexp>.

The new directory is created relative to the default directory "<pref base drive>/rfo-basic/data/". For

example:

 To create a new directory, "homes", in "<pref base drive>/rfo_basic/data/", use the path

"homes/", or simply "homes".

 To create a new directory, "icons", in the root directory of the SD card, use "../../icons".

Mkdir is a valid alias for this command.

Original Author Paul Laughton, 2011 Page 105 De Re BASIC!

File.rename <old_path_sexp>, <new_path_sexp>

The file or directory at old_path is renamed to new_path. If there is already a file present named

<new_path_sexp>, it is silently replaced.

The default path is "<pref base drive>/rfo-basic/data/".

The rename operation can not only change the name of a file or a directory, it can also move the file or

directory to another directory.

For example:

Rename "../../testfile.txt", "testfile1.txt"

removes the file, testfile.txt, from "<pref base drive>/", places it into "sdcard/rfo-basic/data/" and also

renames it to testfile1.txt.

Rename is a valid alias for this command.

File.root <svar>

Returns the canonical path from the file system root to "<pref base drive>/rfo-basic/data", the default

data directory, in <svar>. The <pref_base_drive> is expanded to the full absolute path from the file

system root, "/".

File.size <size_nvar>, <path_sexp>

The size, in bytes, of the file at <path_sexp> is returned in <size_nvar>. If there is no file at <path_sexp>,

this command generates a run-time error.

The <path_sexp> is appended to the default path, "<pref base drive>/rfo-basic/data/".

File.type <type_svar>, <path_sexp>

Returns a one-character type indicator in <type_svar> for the file at <path_sexp>. The <path_sexp> is

appended to the default data path, "<pref base drive>/rfo-basic/data/". The type indicator values are:

Indicator: Meaning:

"d" "directory" – path names a directory

"f" "file" – path names a regular file

"o" "other" – path names a special file

"x" file does not exist

Text File I/O

The text file I/O commands are to be exclusively used for text (.txt) files. Text files are made up of lines

of characters that end in CR (Carriage Return) and/or NL (New Line). The text file input and output

commands read and write entire lines.

Original Author Paul Laughton, 2011 Page 106 De Re BASIC!

The default path is "<pref base drive>/rfo-basic/data/"

Text.open {r|w|a}, <file_table_nvar>, <path_sexp>

The file specified by the path string expression <path_sexp> is opened. The default path is "<pref base

drive>/rfo-basic/data/". The <path_sexp> string is appended to the default path.

The first parameter is a single character that sets the I/O mode for this file:

Parameter Mode Notes

r read

w write Write from the start of the file. Writes over any existing data.

a append Writing starts after the last line in the file.

A file table number is placed into the numeric variable <file_table_nvar>. This value is for use in

subsequent Text.readln, Text.writeln, Text.eof, Text.position.*, or Text.close commands.

If a file being opened for read does not exist then the <file_table_nvar> will be set to -1. The BASIC!

programmer can check for this and either create the file or report the error to the user. Information

about the error is available from the GETERROR$() function.

Opening a file for append that does not exist creates an empty file. Finally, opening a file for write that

already exists deletes the contents of the file; that is, it replaces the existing file with a new, empty one.

Text.close <file_table_nexp>

The previously opened file represented by <file_table_nexp> will be closed.

Note: It is essential to close an output file if you have written over 8k bytes to it. If you do not close the

file then the file will only contain the first 8k bytes.

Text.readln <file_table_nexp> {,<svar>}...

Read the lines from the specified, previously opened file and write them into the <svar> parameter(s). If

<file_table_nexp> is -1, indicating Text.open failed, or if it is not a valid file table number, then the

command throws a run-time error.

After the last line in the file has been read, further attempts to read from the file place the characters

"EOF" into the <line_svar> parameter(s). This is indistinguishable from the string "EOF" read as actual

data, except that the result of the Text.eof command will be false after reading real data and true after

reading at end-of-file (EOF).

This example reads an entire file and prints each line.

TEXT.OPEN r, file_number, "testfile.txt"

DO

 TEXT.READLN file_number, line$

 PRINT line$

Original Author Paul Laughton, 2011 Page 107 De Re BASIC!

UNTIL line$ = "EOF"

TEXT.CLOSE file_number

The file will not automatically be closed when the end-of-file is read. Subsequent reads from the file will

continue to return "EOF".

When you are done reading a file, the Text.close command should be used to close the file.

Text.writeln <file_table_nexp>, <parms same as Print>

The parameters that follow the file table pointer are parsed and processed exactly the same as the Print

command parameters. This command is essentially a Print to a file.

If a parameter line ends with a semicolon, the data is not written to the file. It is stored in a temporary

buffer until the next Text.writeln command that does not end in a semicolon. There is only one

temporary buffer no matter how many files you have open. If you want to build partial print lines for

more than one file at a time, do not use Text.writeln commands ending with semicolons. Instead use

string variables to store the temporary results.

After the last line has been written to the file, the Text.close command should be used to close the file.

Text.writeln with no parameters writes a newline.

Text.eof <file_table_nexp>, <lvar>

Report an opened file’s end-of-file status. If the file is at EOF, the <lvar> is set true (non-zero). If the file

or directory is not at EOF, the <lvar> is set false (zero).

A file opened for write or append is always at EOF. A file opened for read is not at EOF until all of the

data has been read and then one more read is attempted. That read will have returned the string "EOF".

Text.position.set may also position the file at EOF.

Text.position.get <file_table_nexp>, <position_nvar>

Get the position of the next line to be read or written to the file. The position of the first line in the file is

1. The position is incremented by one for each line read or written. The position information can be

used for setting up random file data access.

Note: If a file is opened for append, the position returned will be relative to the end of the file. The

position returned for the first line to be written after a file is opened for append will be 1. You will have

to add these new positions to the known position of the end of the file when building your random

access table.

Text.position.set <file_table_nexp>, <position_nexp>

Sets the position of the next line to read. A position value of 1 will read the first line in the file.

Text.position.set can only be used for files open for text reading.

Original Author Paul Laughton, 2011 Page 108 De Re BASIC!

If the position value is greater than the number of lines in the file, the file will be positioned at the end

of file. The position returned for Text.position.get at the EOF will be number of lines plus one in the file.

If you have marked a position in the file, you cannot set a position before the mark. You will not be

notified that the position is different from what you requested. See Text.position.mark for more

information.

Text.position.mark {{<file_table_nexp>}{, <marklimit_nexp>}}

Marks the current line of the file, and sets the mark limit to <marklimit_nexp> bytes.

Both parameters are optional. If the file table index <file_table_nexp> is omitted, the default file is the

last file opened; you must ensure that the last file opened was a Text file opened for reading. If the mark

limit <marklimit_exp> is omitted, the default value is the file’s current mark limit.

Please read Working with Files Mark and Mark Limit, above.

GrabURL <result_svar>, <url_sexp>{, <timeout_nexp>}

Copies the entire source text of the URL <url_sexp> to the string variable <result_svar>. The URL may

specify an Internet resource or a local file. If the URL does not exist or the data cannot be read, the

<result_svar> is set to the empty string, "", and you can use the GETERROR$() function to get more

information.

If the optional <timeout_nexp> parameter is non-zero, it specifies a timeout in milliseconds. This is

meaningful only if the URL names a resource on a remote host. If the timeout time elapses and host

does not connect or does not return any data, GETERROR$ reports a socket timeout.

If the named resource is empty, the <result_svar> is empty, "", and GETERROR$() returns "No error".

The Split command can be used to split the <result_svar> into an array of lines.

GrabFile <result_svar>, <path_sexp>{, <unicode_flag_lexp>}

Copies the entire contents of the file at <path_sexp> to the string variable <result_svar>. By default,

GrabFile assumes that the file contains binary bytes or ASCII characters. If the optional

<unicode_flag_lexp> evaluates to true (a non-zero numeric value), GrabFile can read Unicode text.

If the file does not exist or cannot be opened, the <result_svar> is set to the empty string, "", and you

can use the GETERROR$() function to get more information. If the file is empty, the <result_svar> is an

empty string, "", but GETERROR$() returns "No error".

For text files, either ASCII or Unicode, the Split command can be used to split the <result_svar> into an

array of lines. GrabFile can also be used grab the contents of a text file for direct use with Text.input:

GRABFILE text$, "MyJournal.txt"

TEXT.INPUT EditedText$, text$

Original Author Paul Laughton, 2011 Page 109 De Re BASIC!

Byte File I/O

Byte file I/O can be used to read and write any type of file (.txt, .jpg, .pdf, .mp3, etc.). Each command

reads or writes one byte or a sequence of bytes as binary data.

Byte.open {r|w|a}, <file_table_nvar>, <path_sexp>

The file specified by the path string expression <path_sexp> is opened. If the path is a URL starting with

"http…" then an Internet file is opened. Otherwise, the <path_sexp> string is appended to the default

path "<pref base drive>/rfo-basic/data/".

The first parameter is a single character that sets the I/O mode for this file:

Parameter Mode Notes

r read File exists: Reads from the start of the file.
File does not exist: Error (see below).

w write File exists: Write from the start of the file. Writes over any existing data.
File does not exist: Creates a new file. Writes from the start of the file.

a append File exists: Writing starts after the last line in the file.
File does not exist: Creates a new file. Writes from the start of the file.

A file table number is placed into the numeric variable <file_table_nvar>. This value is for use in

subsequent Byte.read.*, Byte.write.*, Byte.eof, Byte.position.*, Byte.truncate, Byte.copy, or

Byte.close commands.

If a file being opened for read does not exist then the <file_table_nvar> will be set to -1. The BASIC!

program can check for this and either create the file or report the error to the user. Information about

the error is available from the GETERROR$() function.

Byte.close <file_table_nexp>

Closes the previously opened file.

Byte.read.byte <file_table_nexp> {,<nvar>}...

Reads bytes from a file. The <file_table_nexp> parameter is a file table number returned by a previous

Byte.open. If the file number is -1 then the command throws a run-time error.

Places the byte(s) into the <nvar> parameter(s) as positive values, 0 <= byte <= 255. After the last byte in

the file has been read, further attempts to read from the file return the value -1. The result of the

Byte.eof command will be false after reading real data and true after reading at end-of-file (EOF).

This example reads a file and prints each byte, and prints "-1" at the end to show that the entire file has

been read.

BYTE.OPEN r, file_number, "testfile.jpg"

DO

 BYTE.READ.BYTE file_number, Byte

Original Author Paul Laughton, 2011 Page 110 De Re BASIC!

 PRINT Byte

UNTIL Byte < 0

BYTE.CLOSE file_number

Byte.write.byte <file_table_nexp> {{,<nexp>}...{,<sexp>}}

Writes bytes to the file specified by the file number parameter <file_table_nexp>. The bytes are written

from an optional comma-separated list of numeric expressions, a single optional string expression, or

both.

 Numeric parameters: the command writes the low-order 8 bits of the value of each expression as a

single byte.

 String parameters: the command writes the entire string to the file. Each character of the string is

written as a single byte. See Byte.write.buffer for more information.

 If you have both numeric and string parameters, you may have only one string, and it must be last.

 The command accepts a string for backward compatibility. Byte.write.buffer is preferred.

Examples:

Byte.open w, f1, "tmp.dat" % create a file

Byte.write.byte f1, 10 % write one byte

Byte.write.byte f1, 11, 12, 13 % write three bytes

Byte.write.byte f1, "Hello!" % write six bytes

Byte.write.byte f1, 1,2,3,"abc" % write six bytes

Byte.write.byte f1, "one", "two" % syntax error: only one string allowed

Note: If the bytes are written from a string expression then the expression is evaluated twice. You

should not put calls to user-defined functions in the expression.

Byte.read.number <file_table_nexp> {,<nvar>...}

Reads numbers from the file specified by the file number parameter <file_table_nexp> and places them

into the numeric variables in the "{,<nvar>}..." parameter list. Each number is a group of 8 bytes.

If the file does not have enough data available for all of the variables, the value of one or more <nvar>

will be set to -1. This is indistinguishable from -1 read as actual data, except that the result of the

Byte.eof command will be false for real data and true for EOF.

Normally this command is used only to read values written with Byte.write.number. You must be sure

the file is positioned at the first byte of the eight-byte representation of a number, or you will get

unexpected results.

Byte.write.number <file_table_nexp> {,<nexp>}...

Writes the values of the numeric expressions <nexp> to the file specified by the file number parameter

<file_table_nexp>. This command always writes 8 bytes for each expression in the parameter list.

Original Author Paul Laughton, 2011 Page 111 De Re BASIC!

Byte.read.buffer <file_table_nexp>, <count_nexp>, <buffer_svar>

Reads the specified number of bytes (<count_nexp>) into the buffer string variable (<buffer_svar>) from

the file. The string length (len(<buffer_svar>) will be the number of bytes actually read. If the end of file

is reached, the string length may be less than the requested count.

A buffer string is a special use of the BASIC! string. Each character of a string is 16 bits. When used as a

buffer, one byte of data is written into the lower 8 bits of each 16-bit character. The upper 8 bits are 0.

Extract the binary data from the string, one byte at a time, with the ASCII() or UCODE() functions.

The format of the buffer string read by this command is compatible with the DECODE$() function. If you

know that part of your data contains an encoded string, you can extract the substring (using a function

like MID$()), then pass the substring to DECODE$() to convert it to a BASIC! string.

Byte.write.buffer <file_table_nexp>, <buffer_sexp>

Writes the entire contents of the string expression to the file. The string is assumed to be a buffer string

holding binary data, as described in Byte.read.buffer. The writer discards the upper 8 bits of each 16-bit

character, writing one byte to the file for each character in the string.

The Byte.read.buffer command and the ENCODE$() function always create these "buffer strings". You

can construct one by using, for example, the CHR$() function with values less than 256.

If you use only ASCII characters in a string, you can use this function to write the string to a file. The

output is the same as if you had written it with Text.writeln, except that it will have no added newline.

Byte.eof <file_table_nexp>, <lvar>

Reports an opened file’s end-of-file status. If the file is at EOF, the <lvar> is set true (non-zero). If the file

or directory is not at EOF, the <lvar> is set false (zero).

A file opened for write or append is always at EOF. A file opened for read is not at EOF until all of the

data has been read and then one more read is attempted. That read will have returned the value -1.

Byte.position.set may also position the file at EOF.

Byte.position.get <file_table_nexp>, <position_nvar>

Gets the position of the next byte to be read or written. The position of the first byte is 1. The position

value will be incremented by 1 for each byte read or written.

The position information can be used for setting up random file data access.

If the file is opened for append, the position returned will be the length of the file plus one.

Byte.position.set <file_table_nexp>, <position_nexp>

Sets the position of the next byte to be read from the file. If the position value is greater than the

position of the last byte of the file, the position will point to the end of file.

Original Author Paul Laughton, 2011 Page 112 De Re BASIC!

This command can only be used on files open for byte read.

Byte.position.mark {{<file_table_nexp>}{, <marklimit_nexp>}}

Marks the current position in the file, and sets the mark limit to <marklimit_nexp> bytes.

Both parameters are optional. If the file table index <file_table_nexp> is omitted, the default file is the

last file opened; you must ensure that the last file opened was a Byte file opened for reading. If the

mark limit <marklimit_exp> is omitted, the default value is the file’s current mark limit.

Please read Working with Files Mark and Mark Limit, above.

Byte.truncate <file_table_nexp>,<length_nexp>

Truncates the file to <length_nexp> bytes and closes the file. Setting the truncate length <length_nexp>

larger than the current length (current write position - 1) has no effect.

This command can only be used on files open for byte write or append.

Byte.copy <file_table_nexp>,<output_file_sexp>

Copies the previously open input file represented by <file_table_nexp> to the file whose path is

specified by <output_file_sexp>. The default path is "<pref base drive>/rfo-basic/data/".

If <file_table_nexp> = -1 then a run-time error will be thrown.

The input file will be completely copied to the to the output file. Both files will then be closed.

You should use Byte.copy if you are using Byte I/O for the sole purpose of copying. It is thousands

(literally) of times faster than using Byte.read/Byte.write.

HTML

Introduction

The BASIC! HTML package is designed to allow the BASIC! programmer to create user interfaces using

HTML and JavaScript. The interface provides for interaction between the HTML engine and BASIC!. The

HTML programmer can use JavaScript to send messages to BASIC!. The HTML engine will also report

user events such as the BACK key, hyperlink transfers, downloads, form data and errors.

The demo program, f37_html_demo.bas, combined with the HTML demo files, htmlDemo1.html and

htmlDemo2.html, illustrate the various commands and possibilities. The content of all three files are

listed in the Appendix B of this document. They are also delivered with the BASIC! apk. It is highly

recommended that all three files be carefully studied to fully understand this interface.

Another demo program, f38_html_edit.bas, can be used to edit html files. To use the program, run it

and enter the html file name without the html extension. The program will add the extension ".html".

Original Author Paul Laughton, 2011 Page 113 De Re BASIC!

Caution: Forum users have reported problems in HTML mode with commands that use a new window or

screen to interact with the user (Input, Select and others), or when using the BACK key to try to control

actions outside of the HTML WebView.

HTML Commands

Html.open {<ShowStatusBar_lexp> {, <Orientation_nexp>}}

This command must be executed before using the HTML interface.

The Status Bar will be shown on the Web Screen if the <ShowStatusBar_lexp> is true (not zero). If the

<ShowStatusBar_lexp> is not present, the Status Bar will not be shown.

The orientation upon opening the HTML screen will be determined by the <Orientation_nexp> value.

<Orientation_nexp> values are the same as values for the Html.orientation command (see below). If the

<Orientation_nexp> is not present, the default orientation is determined by the orientation of the

device.

Both <ShowStatusBar_lexp> and <Orientation_nexp> are optional; however, a <ShowStatusBar_lexp>

must be present in order to specify an <Orientation_nexp>.

Executing a second HTML.OPEN before executing HTML.CLOSE will generate a run-time error.

Html.orientation <nexp>

The value of the <nexp> sets the orientation of screen as follows:
-1 = Orientation depends upon the sensors.

 0 = Orientation is forced to Landscape.

 1 = Orientation is forced to Portrait.

 2 = Orientation is forced to Reverse Landscape.

 3 = Orientation is forced to Reverse Portrait.

Html.load.url <file_sexp>

Loads and displays the file specified in the string <file_sexp>. The file may reside on the Internet or on

your android device. In either case, the entire URL must be specified.

The command:

HTML.LOAD.URL "http://laughton.com/basic/"

will load and display the BASIC! home page.

The command:

HTML.LOAD.URL "htmlDemo1.html"

will load and display the html file "htmlDemo1.html" residing in BASIC!'s default "data" directory, as set

by your "Base Drive" preference. You may also use a fully-qualified pathname. With the default "Base

Drive" setting, this command loads the same file:

Original Author Paul Laughton, 2011 Page 114 De Re BASIC!

HTML.LOAD.URL "file:///sdcard/rfo-basic/data/htmlDemo1.html"

When you tap the BACK key on the originally-loaded page, the HTML viewer will be closed and the

BASIC! output console will be displayed. If the page that was originally loaded links to another page and

then the BACK key is tapped, it will be up to the BASIC! programmer to decide what to do.

Html.load.string <html_sexp>

Loads and displays the HTML contained in the string expression. The base page for this HTML will be:

<pref base drive>/rfo-basic/data/

Html.post <url_sexp>, <list_nexp>

Execute a Post command to an Internet location.

<url_sexp> is a string expression giving the url that will accept the Post.

<list_nexp> is a pointer to a string list which contains the Name/Value pairs needed for the Post.

Html.get.datalink <data_svar>

A datalink provides a method for sending a message from an HTML program to the BASIC! programmer.

There are two parts to a datalink in an HTML file:

1. The JavaScript that defines the datalink function

2. The HTML code that calls the datalink function.

The BASIC! Program requires a mechanism for communicating with a website's HTML code.

Html.get.datalink gets the next datalink string from the datalink buffer. If there is no data available then

the returned data will be an empty string (""). You should program a loop waiting for data:

DO

 HTML.GET.DATALINK data$

UNTIL data$ <> ""

The returned data string will always start with a specific set of four characters—three alphabetic

characters followed by a colon (":"). These four characters identify the return datalink data type. Most of

the type codes are followed by some sort of data. The codes are:

BAK: The user has tapped the BACK key. The data is either "1" or "0".

If the data is "0" then the user tapped BACK in the start screen. Going back is not possible

therefore HTML has been closed.

If the data is "1" then going back is possible. The BASIC! programmer should issue the command

Html.go.back if going back is desired.

LNK: The user has tapped a hyperlink. The linked-to url is returned. The transfer to the new url

has not been done. The BASIC! programmer must execute an Html.load.url with the returned

url (or some other url) for a transfer to occur.

Original Author Paul Laughton, 2011 Page 115 De Re BASIC!

ERR: Some sort of fatal error has occurred. The error condition will be returned. This error code

always closes the html engine. The BASIC! output console will be displayed.

FOR: The user has tapped the Submit button on a form with action=’FORM’ The form

name/value pairs are returned.

DNL: The user has clicked a link that requires a download. The download url is supplied. It is up

to the BASIC! programmer to do the download.

DAT: The user has performed some action that has caused some JavaScript code to send data to

BASIC! by means of the datalink. The JavaScript function for sending the data is:

<script type="text/javascript">

 function doDataLink(data) {

 Android.dataLink(data);

 }

</script>

Html.go.back

Go back one HTML screen, if possible.

Html.go.forward

Go forward one HTML screen, if possible.

Html.close

Closes the HTML engine and display.

Html.clear.cache

Clears the HTML cache.

Html.clear.history

Clears the HTML history.

Related Commands

Browse <url_sexp>

If <url_sexp> starts with "http…" then the internet site specified by <url_sexp> will be opened and

displayed.

If <url_sexp> starts with "file:///sdcard/... " then the file will be open be opened by the application,

ThinkFree Mobile. The file types that the free version of ThinkFree Mobile can open are ".txt, .doc, .xls,

.rtf".

If your Android device does not already have ThinkFree Mobile Viewer on it, you can find it in the apps

section of the Google Play Store. There is also a paid "pro" version that manages additional file types.

file:///C:/sdcard/

Original Author Paul Laughton, 2011 Page 116 De Re BASIC!

Note: You can also use the HTML commands to display (and interact with) web pages located on your

device or on the web.

Http.post <url_sexp>, <list_nexp>, <result_svar>

Execute a Post command to an Internet location.

<url_sexp> contains the url ("http://....") that will accept the Post.

<list_nexp> is a pointer to a string list which contains the Name/Value pairs needed for the Post.

<result_svar> is where the Post response will be placed.

TCP/IP Sockets

TCP/IP Sockets provide for the transfer of information from one point on the Internet to another. There

are two genders of TCP/IP Sockets: Servers and Clients. Clients must talk to Servers. Servers must talk to

Clients. Clients cannot talk to Clients. Servers cannot talk to Servers.

Every Client and Server pair have an agreed-upon protocol. This protocol determines who speaks first

and the meaning and sequence of the messages that flow between them.

Most people who use a TCP/IP Socket will use a Client Socket to exchange messages with an existing

Server with a predefined protocol. One simple example of this is the Sample Program file,

f31_socket_time.bas. This program uses a TCP/IP client socket to get the current time from one of the

many time servers in the USA.

A TCP/IP Server can be set up in BASIC!; however, there are difficulties. The capabilities of individual

wireless networks vary. Some wireless networks allow servers. Most do not. Servers can usually be run

on WiFi or Ethernet Local Area Networks (LAN).

If you want to set up a Server, the way most likely to work is to establish the Server inside a LAN. You

will need to provide Port tunneling (forwarding) from the LAN’s external Internal IP to the device’s LAN

IP. You must to be able to program (setup) the LAN router in order to do this.

Clients, whether running inside the Server’s LAN or from the Internet, should connect to the LAN’s

external IP address using the pre-established, tunneled Port. This external or WAN IP can be found

using:

Graburl ip$, "http://icanhazip.com"

This is not the same IP that would be obtained by executing Socket.myIP on the server device.

Note: The specified IPs do not have to be in the numeric form. They can be in the name form.

The Sample Program, f32_tcp_ip_sockets.bas, demonstrates the socket commands for a Server working

in conjunction with a Client. You will need two Android devices to run this program.

http://icanhazip.com/

Original Author Paul Laughton, 2011 Page 117 De Re BASIC!

TCP/IP Client Socket Commands

Socket.client.connect <server_sexp>, <port_nexp> { , <wait_lexp> }

Create a Client TCP/IP socket and attempt to connect to the Server whose Host Name or IP Address is

specified by the Server string expression using the Port specified by Port numeric expression.

The optional "wait" parameter determines if this command waits until a connection is made with the

Server. If the parameter is absent or true (non-zero), the command will not return until the connection

has been made or an error is detected. If the Server does not respond, the command should time out

after a couple of minutes, but this is not certain.

If the parameter is false (zero), the command completes immediately. Use Socket.server.status to

determine when the connection is made. If you monitor the socket status, you can set your own time-

out policy. You must use the Socket.client.close command to stop a connection attempt that has not

completed.

Socket.client.status <status_nvar>

Get the current client socket connection status and place the value in the numeric variable

<status_nvar>.

0 = Nothing going on

2 = Connecting

3 = Connected

Socket.client.server.ip <svar>

Return the IP of the server that this client is connected to in the string variable.

Socket.client.read.line <line_svar>

Read a line from the previously-connected Server and place the line into the line string variable. The

command does not return until the Server sends a line. To avoid an infinite delay waiting for the Server

to send a line, the Socket.client.read.ready command can be repeatedly executed with timeouts.

Socket.client.read.ready <nvar>

If the previously created Client socket has not received a line for reading by Socket.client.read.line then

set the return variable <nvar> to zero. Otherwise return a non-zero value.

The Socket.client.read.line command does not return until a line has been received from the Server.

This command can be used to allow your program to time out if a line has not been received within a

pre-determined time span. You can be sure that Socket.client.read.line will return with a line of data if

Socket.client.read.ready returns a non-zero value.

Socket.client.read.file <file_nexp>

Read file data transmitted by the Server and write it to a file. The <file_nexp> is the file index of a file

opened for write by Byte.open write command. For example:

Byte.open w, fw, "image.jpg"

Original Author Paul Laughton, 2011 Page 118 De Re BASIC!

Socket.client.read.file fw

Byte.close fw

Socket.client.write.line <line_sexp>

Send the string expression <line_sexp> to the previously-connected Server as UTF-16 characters. End of

line characters will be added to the end of the line.

Socket.client.write.bytes <sexp>

Send the string expression, <sexp>, to the previously-connected Server as 8-bit bytes. Each character of

the string is sent as a single byte. The string is not encoded. No end-of-line characters are added by

BASIC!. If you need a CR or LF character, you must make it part of the string. Note that if

Socket.server.read.line is used to receive these bytes, the read.line command will not return until it

receives a LF (10, 0x0A) character.

Socket.client.write.file <file_nexp>

Transmit a file to the Server. The <file_nexp> is the file index of a file opened for read by Byte.open.

Example:

Byte.open r, fr, "image.jpg"

Socket.client.write.file fr

Byte.close fr

Socket.client.close

Closes an open client side connection.

TCP/IP Server Socket Commands

Socket.myIP <svar>

Returns the IP of the device in string variable <svar>. If the device has no active IP address, the returned

value is the empty string "".

If the device is on a WiFi or Ethernet LAN then the IP returned is the device’s LAN IP.

Note: The external or WAN IP can be found using:

Graburl ip$, "http://icanhazip.com"

Socket.myIP <array$[]>{, <nvar>}

Returns all active IP addresses of the device in the string array <array$[]>. If you provide the optional

address-count variable <nvar>, it is set to the number of active IP addresses.

If the device has no active IP address, the array has a single element, the empty string "", and the

address-count in <nvar> is 0. In this case only, the address-count is not the same as the array length.

Most devices usually have zero or one IP address. It is possible to have more than one. For example,

after enabling a WiFi connection, there may still be an active cellular data connection. Normally this

connection shuts down after a short time, but in some cases it may remain open.

http://icanhazip.com/

Original Author Paul Laughton, 2011 Page 119 De Re BASIC!

Socket.server.create <port_nexp>

Establish a Server that will listen to the Port specified by the numeric expression, <port_nexp>.

Socket.server.connect {<wait_lexp>}

Direct the previously created Server to accept a connection from the next client in the queue.

The optional "wait" parameter determines if the command waits until a connection is made with a

client. If the parameter is absent or true (non-zero), the command waits for the connection. If the

parameter is false (zero), the command completes immediately. Use Socket.server.status to determine

when the connection is made.

In general, it is safer to set the parameter to false (don't wait) and explicitly monitor the connection's

status, since it can avoid a problem if the program exits with no connection made. You must use the

Socket.server.close command to stop a connection attempt that has not completed.

Socket.server.status <status_nvar>

Get the current server socket connection status and place the value in the numeric variable

<status_nvar>.

- 1 = Server socket not created

 0 = Nothing going on

 1 = Listening

 3 = Connected

Socket.server.read.line <svar>

Read a line sent from the previously-connected Client and place the line into the string variable <svar>.

The command does not return until the Client sends a line. To avoid an infinite delay waiting for the

Client to send a line, the Socket.server.read.ready command can be repeatedly executed with timeouts.

Socket.server.read.ready <nvar>

If the previously-connected Client socket has not sent a line for reading by Socket.server.read.line then

set the return variable <nvar> to zero. Otherwise return a non-zero value.

The Socket.server.read.line command does not return until a line has been received from the Client.

This command can be used to allow your program to time out if a line has not been received within a

pre-determined time span. You can be sure that Socket.server.read.line will return with a line of data if

returns a non-zero value.

Socket.server.write.line <line_sexp>

Send the string expression <line_sexp> to the previously-connected Client as UTF-16 characters. End of

line characters will be added to the end of the line.

Socket.server.write.bytes <sexp>

Send the string expression, <sexp>, to the previously-connected Client as 8-bit bytes. Each character of

the string is sent as a single byte. The string is not encoded. No end of line characters are added by

Original Author Paul Laughton, 2011 Page 120 De Re BASIC!

BASIC!. If you need a CR or LF character, you must make it part of the string. Note that if

Socket.client.read.line is used to receive these bytes, the read.line command will not return until it

receives a LF (10, 0x0A) character.

Socket.server.write.file <file_nexp>

Transmit a file to the Client. The <file_nexp> is the file index of a file opened for read by Byte.open.

Example:

Byte.open r, fr, "image.jpg"

Socket.server.write.file fr

Byte.close fr

Socket.server.read.file <file_nexp>

Read file data transmitted by the Client and write it to a file. The <file_nexp> is the file index of a file

opened for write by Byte.open. Example:

Byte.open w, fw, "image.jpg"

Socket.server.read.file fw

Byte.close fw

Socket.server.disconnect

Close the connection with the previously-connected Client. A new Socket.server.connect can then be

executed to connect to the next client in the queue.

Socket.server.close

Close the previously created Server. Any currently connected client will be disconnected.

Socket.server.client.ip <nvar>

Return the IP of the Client currently connected to the Server.

FTP Client

These FTP commands implement a FTP Client

Ftp.open <url_sexp>, <port_nexp>, <user_sexp>, <pw_sexp>

Connects to the specified url and port. Logs onto the server using the specified user name and

password. For example:

ftp.open "ftp.laughton.com", 21, "basic", "basic"

Ftp.close

Disconnects from the FTP server.

Ftp.put <source_sexp>, <destination_sexp>

Uploads specified source file to the specified destination file on connected ftp server.

ftp://ftp.open/
ftp://ftp.laughton.com/
ftp://ftp.put/

Original Author Paul Laughton, 2011 Page 121 De Re BASIC!

The source file is relative to the directory, "<pref base drive>/rfo-basic/data/" If you want to upload a

BASIC! source file, the file name string would be: "../source/xxxx.bas".

The destination file is relative to the current working directory on the server. If you want to upload to a

subdirectory of the current working directory, specify the path to that directory. For example, if there is

a subdirectory named "etc" then the filename, "/etc/name" would upload the file into that subdirectory.

Ftp.get <source_sexp>, <destination_sexp>

The source file on the connected ftp server is downloaded to the specified destination file on the

Android device.

You can specify a subdirectory in the server source file string.

The destination file path is relative to "<pref base drive>/rfo-basic/data/" If you want to download a

BASIC! source file, the path would be, "../source/xxx.bas".

Ftp.dir <list_nvar> {,<dirmark_sexp>}

Creates a list of the names of the files and directories in the current working directory and places it in a

BASIC! List data structure. A pointer to the new List is returned in the variable <list_nvar>.

A directory is identified by a marker appended to its name. The default marker is the string "(d)". You

can change the marker with the optional directory mark parameter <dirmark_sexp>. If you do not want

directories to be marked, set <dirmark_sexp> to an empty string, "".

The following code can be used to print the file names in that list:

ftp.dir file_list

list.size file_list,size

for i = 1 to size

 list.get file_list,i,name$

 print name$

next i

Ftp.cd <new_directory_sexp>

Changes the current working directory to the specified new directory.

Ftp.rename <old_filename_sexp>, <new_filename_sexp>

Renames the specified old filename to the specified new file name.

Ftp.delete <filename_sexp>

Deletes the specified file.

ftp://ftp.get/
ftp://ftp.dir/
ftp://ftp.cd/
ftp://ftp.rename/
ftp://ftp.delete/

Original Author Paul Laughton, 2011 Page 122 De Re BASIC!

Ftp.rmdir <directory_sexp>

Removes (deletes) the specified directory if and only if that directory is empty.

Ftp.mkdir <directory_sexp>

Creates a new directory of the specified name.

Bluetooth

BASIC! implements Bluetooth in a manner which allows the transfer of data bytes between an Android

device and some other device (which may or may not be another Android device).

Before attempting to execute any BASIC! Bluetooth commands, you should use the Android "Settings"

Application to enable Bluetooth and pair with any device(s) with which you plan to communicate.

When Bluetooth is opened using the Bt.open command, the device goes into the Listen Mode. While in

this mode it waits for a device to attempt to connect.

For an active attempt to make a Bluetooth connection, you can use the Connect Mode by successfully

executing the Bt.connect command. Upon executing the Bt.connect command the person running the

program is given a list of paired Bluetooth devices and asked. When the user selects a device, BASIC!

attempts to connect to it.

You should monitor the state of the Bluetooth using the Bt.status command. This command will report

states of Listening, Connecting and Connected. Once you receive a "Connected" report, you can proceed

to read bytes and write bytes to the connected device.

You can write bytes to a connected device using the Bt.write command.

Data is read from the connected device using the Bt.read.bytes command; however, before executing

Bt.read.bytes, you need to find out if there is data to be read. You do this using the Bt.read.ready

command.

Once connected, you should continue to monitor the status (using Bt.status) to ensure that the

connected device remains connected.

When you are done with a particular connection or with Bluetooth in general, execute Bt.close.

The sample program, f35_bluetooth, is a working example of Bluetooth using two Android devices in a

"chat" type application.

Bt.open {0|1}

Opens Bluetooth in Listen Mode. If you do not have Bluetooth enabled (using the Android Settings

Application) then the person running the program will be asked whether Bluetooth should be enabled.

After Bt.open is successfully executed, the code will listen for a device that wants to connect.

ftp://ftp.rmdir/
ftp://ftp.mkdir/

Original Author Paul Laughton, 2011 Page 123 De Re BASIC!

The optional parameter determines if BT will listen for a secure or insecure connection. If no parameter

is given or if the parameter is 1, then a secure connection request will be listened for. Otherwise, an

insecure connection will be listened for. It is not possible to listen for either a secure or insecure

connection with one Bt.open command because the Android API requires declaring a specific

secure/insecure open.

If Bt.open is used in graphics mode (after Gr.open), you will need to insert a Pause 500 statement after

the Bt.open statement.

Bt.close

Closes any previously opened Bluetooth connection. Bluetooth will automatically be closed when the

program execution ends.

Bt.connect {0|1}

Commands BASIC! to connect to a particular device. Executing this command will cause a list of paired

devices to be displayed. When one of these devices is selected the Bt.status will become "Connecting"

until the device has connected.

The optional parameter determines if BT will seek a secure or insecure connection. If no parameter is

given or if the parameter is 1, then a secure connection will be requested. Otherwise, an insecure

connection will be requested.

Bt.disconnect

Disconnects from the connected Bluetooth device and goes into the Listen status. This avoids having to

use Bt.close + Bt.open to disconnect and wait for a new connection.

Bt.reconnect

This command will attempt to reconnect to a device that was previously connected (during this Run)

with Bt.connect or a prior Bt.reconnect. The command cannot be used to reconnect to a device that

was connected following a Bt.open or Bt.disconnect command (i.e. from the Listening status).

You should monitor the Bluetooth status for Connected (3) after executing Bt.reconnect.

Bt.status {{<connect_var>}{, <name_svar>}{, <address_svar>}}

Gets the current Bluetooth status and places the information in the return variables. The available data

are the current connection status (in <connect_var>), and the friendly name and MAC address of your

Bluetooth hardware (in <name_svar> and <address_svar>).

All parameters are optional; use commas to indicate omitted parameters (see Optional Parameters).

If the connection status variable <connect_var> is present, it may be either a numeric variable or a string

variable. The table shows the possible return values of each type:

Original Author Paul Laughton, 2011 Page 124 De Re BASIC!

Numeric Value String Value Meaning

-1 Not enabled Bluetooth not enabled

0 Idle Nothing going on

1 Listening Listening for connection

2 Connecting Connecting to another device

3 Connected Connected to another device

If the device name string variable <name_svar> is present, it is set to the friendly device name. If your

device has no Bluetooth radio, the string will be empty.

If the address string variable <address_svar> is present, it is set to the MAC address of your Bluetooth

hardware, represented as a string of six hex numbers separated by colons: "00:11:22:AA:BB:CC".

Bt.write {<exp> {,|;}} ...

Writes data to the Bluetooth connection.

If the comma (,) separator is used then a comma will be printed between the values of the expressions.

If the semicolon (;) separator is used then nothing will separate the values of the expressions.

If the semicolon is at the end of the line, the output will be transmitted immediately, with no newline

character(s) added.

The parameters are the same as the Print parameters. This command is essentially a Print to the

Bluetooth connection, with two differences:

 Only one byte is transmitted for each character; the upper byte is discarded. Binary data and

ASCII text are sent correctly, but Unicode characters may not be.

 A line that ends with a semicolon is sent immediately, with no newline character(s) added.

This command with no parameters sends a newline character to the Bluetooth connection.

Bt.read.ready <nvar>

Reports in the numeric variable the number of messages ready to be read. If the value is greater than

zero then the messages should be read until the queue is empty.

OnBtReadReady:

Interrupt label that traps the arrival of a message received on the Bluetooth channel (see "Interrupt

Labels"). If a Bluetooth message is ready (Bt.read.ready would return a non-zero value) BASIC! executes

the statements after the OnBtReady: label, where you can read and handle the message. When done,

execute the Bt.onReadReady.Resume command to resume the interrupted program.

Bt.onReadReady.resume

Resumes execution at the point in the program where it was interrupted by the Bluetooth Read Ready

event.

Original Author Paul Laughton, 2011 Page 125 De Re BASIC!

Bt.read.bytes <svar>

The next available message is placed into the specified string variable. If there is no message then the

string variable will be returned with an empty string ("").

Each message byte is placed in one character of the string; the upper byte of each character is 0. This is

similar to Byte.read.buffer, which reads binary data from a file into a buffer string.

Bt.device.name <svar>

Returns the name of the connected device in the string variable. A run-time error will be generated if no

device (Status <> 3) is connected.

Bt.set.UUID <sexp>

A Universally Unique Identifier (UUID) is a standardized 128-bit format for a string ID used to uniquely

identify information. The point of a UUID is that it's big enough that you can select any random 128-bit

number and it won't clash with any other number selected similarly. In this case, it's used to uniquely

identify your application's Bluetooth service. To get a UUID to use with your application, you can use

one of the many random UUID generators on the web.

Many devices have common UUIDs for their particular application. The default BASIC! UUID is the

standard Serial Port Profile (SPP) UUID: "00001101-0000-1000-8000-00805F9B34FB".

You can change the default UUID using this command.

Some information about 16 bit and 128 bit UUIDs can be found at:

http://farwestab.wordpress.com/2011/02/05/some-tips-on-android-and-bluetooth/

Communication: Phone and Text

Email.send <recipient_sexp>, <subject_sexp>, <body_sexp>

The email message in the Body string expression will be sent to the named recipient with the named

subject heading.

MyPhoneNumber <svar>

The phone number of the Android device will be returned in the string variable. If the device is not

connected to a cellular network, the returned value will be uncertain.

Phone.call <sexp>

The phone number contained in the string expression will be called. Your device must be connected to a

cellular network to make phone calls.

http://farwestab.wordpress.com/2011/02/05/some-tips-on-android-and-bluetooth/

Original Author Paul Laughton, 2011 Page 126 De Re BASIC!

Phone.dial <sexp>

Open the phone dialer app. The phone number contained in the string expression will be displayed in

the dialer. Alphabetic characters in the string will be converted to digits, as if the corresponding key of a

phone pad had been touched.

Phone.rcv.init

Prepare to detect the state of your phone. If you want to detect phone calls using Phone.rcv.next, or

you want Phone.info to attempt to report signal strength, you must first run this command.

Phone.rcv.init starts a background "listener" task that detects changes in the phone state. There is no

command to disable this listener, but it is stopped when your program exits.

Phone.rcv.next <state_nvar>, <number_svar>

The state of the phone will be returned in the state numeric value. A phone number may be returned in

the string variable.

State = 0. The phone is idle. The phone number will be an empty string.

State = 1. The phone is ringing. The phone number will be in the string.

State = 2. The phone is off hook. If there is no phone number (an empty string) then an outgoing call is

being made. If there is a phone number then an incoming phone call is in progress.

States 1 and 2 will be continuously reported as long the phone is ringing or the phone remains off hook.

Sms.send <number_sexp>, <message_sexp>

The SMS message in the string expression <message_sexp> will be sent to number in the string

expression <number_sexp>. This command does not provide any feedback about the sending of the

message. The device must be connected to a cellular network to send an SMS message.

Sms.rcv.init

Prepare to intercept received SMS using the sms.rcv.next command.

Sms.rcv.next <svar>

Read the next received SMS message from received SMS message queue in the string variable.

The returned string will contain "@" if there is no SMS message in the queue.

The sms.rcv.init command must be called before the first sms.rcv.next command is executed.

Example:

SMS.RCV.INIT

DO

Original Author Paul Laughton, 2011 Page 127 De Re BASIC!

DO % Loop until SMS received

 PAUSE 5000 % Sleep of 5 seconds

 SMS.RCV.NEXT m$ % Try to get a new message

UNTIL m$ <> "@" % "@" indicates no new message

PRINT m$ % Print the new message

UNTIL 0 % Loop forever

Time and Timers

Time and TimeZone Commands

The TimeZone commands allow you to manage the timezone used by the Time command and the

TIME(…) function. They do not affect the no-parameter TIME() function. They affect only your BASIC!

program, not any other time-related operation on your device.

See also the time functions CLOCK() and TIME().

Time {<time_nexp>,} Year$, Month$, Day$, Hour$, Minute$, Second$, WeekDay, isDST

Returns the current (default) or specified date, time, weekday, and Daylight Saving Time flag in the

variables.

You can use the optional first parameter (<time_nexp>) to specify what time to return in the variables. It

is a numeric expression number of milliseconds from 12:00:00 AM, January 1, 1970, UTC, as returned by

the TIME() functions. It may be negative, indicating a time before that date.

The day/date and time are returned as two-digit numeric strings with a leading zero when needed,

except Year$ which is four characters.

The WeekDay is a number from 1 to 7, where 1 means Sunday. You can use it to index an array of day

names in your language of choice.

The isDST flag is

 1 if the current or specified time is in Daylight Saving Time in the current timezone

 0 if the time is not in Daylight Saving Time (is Standard Time)

 -1 if the system can't tell if the time is in DST

The current timezone is your local timezone unless you change it with the TimeZone commands.

All of the return variables are optional. That is, you can omit any of them, but if you want to return only

some of them, you need to retain their position by including commas for the omitted return variables.

For example:

t = TIME(2001, 2, 3, 4, 5, 6)

Time t, Y$, M$, D$ % sets only the year, month, and day

Time t, Y$, M$, D$,,,, W % adds the day of the week (7, Saturday)

To do the same with the current time, leave out both the first parameter and its comma:

Original Author Paul Laughton, 2011 Page 128 De Re BASIC!

Time ,, day$,,,, wkday % returns the today's day and weekday

TimeZone.set { <tz_sexp> }

Sets the timezone for your program. If you don't specify a timezone, it is set to the default for your

device, which is based on where you are. If you specify a timezone your device does not recognize, it is

set to "GMT". (In Android, GMT is exactly the same as UTC).

TimeZone.get <tz_svar>

Returns the current timezone in the string variable. This is the default timezone for your device and

location, unless you have changed it with TimeZone.set.

TimeZone.list <tz_list_pointer_nexp>

While timezones are defined by international standards, the only ones that matter to your program are

those recognized by your device. This command returns all valid timezone strings, putting them in the

list that <tz_list_pointer_nexp> points at. The previous contents of the list are discarded. If the pointer

does not specify a valid string list, and the expression is a numeric variable, a new list is created and the

variable is set to point to the new list.

Timer Interrupt and Commands

You can set a timer that will interrupt the execution of your program at some set time interval. When

the timer expires, BASIC! jumps to the statements following the OnTimer: label. When you have done

whatever you need to do to handle this Timer event, you use the Timer.resume command to resume

execution of the program at the point where the timer interrupt occurred.

The timer cannot interrupt an executing command. When the timer expires, the current command is

allowed to complete. Then the timer interrupt code after the OnTimer: label executes. If the current

command takes a long time to finish, it may appear that your timer is late.

The timer cannot interrupt another interrupt. If the timer expires while any interrupt event handler is

running, the OnTimer: interrupt will be delayed. If the timer expires while the OnTimer: interrupt

handler is running, the timer event will be lost. The OnTimer: interrupt code must exit by running

Timer.resume, or the timer interrupt can occur only once.

Timer.set <interval_nexp>

Sets a timer that will repeatedly interrupt program execution after the specified time interval. The

interval time units are milliseconds. The program must also contain an OnTimer: label.

OnTimer:

Interrupt label for the timer interrupt. (See "Interrupt Labels" and "Timer Interrupts and Commands".)

Timer.resume

Resumes execution at the point in the BASIC! program where the OnTimer: interrupt occurred.

Original Author Paul Laughton, 2011 Page 129 De Re BASIC!

Timer.clear

Clears the repeating timer. No further timer interrupts will occur.

Sample Code
n=0

TIMER.SET 2000

DO

UNTIL n=4

TIMER.CLEAR

PRINT "Timer cleared. No further interrupts."

DO

UNTIL 0

ONTIMER:

n = n + 1

PRINT n*2; " seconds"

TIMER.RESUME

Clipboard

Clipboard.get <svar>

Copies the current contents of the clipboard into <svar>

Clipboard.put <sexp>

Places <sexp> into the clipboard.

Encryption

Encrypts and decrypts a string using a supplied password. The encryption algorithm used is

"PBEWithMD5AndDES".

Encrypt {<pw_sexp>}, <source_sexp>, <encrypted_svar>

Encrypts the string <source_sexp> using the password <pw_sexp>. The result is placed into the variable

<encrypted_svar>.

The password parameter is optional, but its comma is required. Omitting the password is the same as

using an empty string, "".

This command is the same as ENCODE$("ENCRYPT", <pw_sexp>, <source_sexp>).

Decrypt <pw_sexp>, <encrypted_sexp>, <decrypted_svar>

Decrypts the encrypted string <encrypted_sexp> using the password <pw_sexp>. The result is placed in

<decrypted_svar>.

Original Author Paul Laughton, 2011 Page 130 De Re BASIC!

The password parameter is optional, but its comma is required. Omitting the password is the same as

using an empty string, "".

This command is the same as DECODE$("ENCRYPT", <pw_sexp>, <source_sexp>).

Ringer

Android devices support three ringtone modes:

Value: Meaning: Behavior

0 Silent Ringer is silent and does not vibrate

1 Vibrate Ringer is silent but vibrates

2 Normal Ringer may be audible and may vibrate

"Normal" behavior depends on other device settings set by the user.

Ringer volume is an integer number from zero to a device-dependent maximum. If the volume is zero

the ringer is silent.

NOTE: These are system settings. Any change you make persists after your program ends. You may want

to record the original settings and change them back when the program exits.

Ringer.get.mode <nvar>

Returns the current ringtone mode in the numeric variable.

Ringer.set.mode <nexp>

Changes the ringtone mode to the specified value. If the value is not a valid mode, the device mode is

not changed.

Ringer.get.volume <vol_nvar> { , <max_nvar> }

Returns the ringer volume level in the numeric variable. Returns the maximum volume settting in

<max_nvar>, if <max_nvar> is present.

Ringer.set.volume <nexp>

Changes the ringer volume to the specified value. If the value is less than zero, volume is set to zero. If

the value is greater than the device-specific maximum, the volume is set to the maximum level.

String Operations

Split and Join are complementary operations. Split separates a string into parts and put the parts in an

array. Join builds a string by combining the elements of an array.

See also the various String Functions.

Original Author Paul Laughton, 2011 Page 131 De Re BASIC!

Join <source_array$[]>, <result_svar> {, <separator_sexp>{, <wrapper_sexp}}

Join.all <source_array$[]>, <result_svar> {, <separator_sexp>{,

<wrapper_sexp}}

The elements of the <source_array$[]> are joined together as a single string in the <result_svar>. By

default, the source elements are joined with nothing between them or around them.

You may specify optional modifiers that add characters to the string. Copies of the separator string

<separator_sexp> are written between source elements. Copies of the wrapper string <wrapper_sexp>

are placed before and after the rest of the result string.

The Join command omits any empty source elements. The Join.all command includes all source

elements in the result string, even if they are empty. There is no difference between the two commands

unless you specify a non-empty separator string. Join.all places copies of the separator between all of

the elements, including the empty ones.

An example of an operation that uses both separators and wrappers is a CSV string, for "comma-

separated values".

InnerPlanets$ = "Mercury Venus Earth Mars"

SPLIT IP$[], InnerPlanets$

JOIN IP$[], PlanetsCSV$, "\",\"", "\""

PRINT PlanetsCSV$

This prints the string "Mercury","Venus","Earth","Mars" (including all of the quotes). The separator

puts the "," between planet names, and the wrapper puts the " at the beginning and end of the string.

Split <result_array$[]>, <sexp> {, <test_sexp>}

Split.all <result_array$[]>, <sexp> {, <test_sexp>}

Splits the source string <sexp> into multiple strings and place them into <result_array$[]>. The array is

specified without an index. If the array exists, it is overwritten. Otherwise a new array is created. The

result is always a one-dimensional array.

The string is split at each location where <test_sexp> occurs. The <test_sexp> occurrences are removed

from the result strings. The <text_sexp> parameter is optional; if it is not given, the string is split on

whitespace. Omitting the parameter is equivalent to specifying "\\s+".

If the beginning of the source string matches the test string, the first element of the result array will be

an empty string. This differs from the WORD$() function, which strips leading and trailing occurrences of

the test string from the source string before splitting.

Two adjacent occurrences of the test expression in the source expression result in an empty element

somewhere in the result array. The Split command discards these empty strings if they occur at the end

of the result array. To keep these trailing empty strings, use the Split.all command.

Original Author Paul Laughton, 2011 Page 132 De Re BASIC!

Example:
string$ = "a:b:c:d"

delimiter$ = ":"

SPLIT result$[], string$, delimiter$

ARRAY.LENGTH length, result$[]

FOR i = 1 TO length

PRINT result$[i] + " ";

NEXT i

PRINT ""

Prints: a b c d

Note: The <test_sexp> is actually a Regular Expression. If you are not getting the results that you expect

from the <test_sexp> then you should examine the rules for Regular Expressions at:

http://developer.android.com/reference/java/util/regex/Pattern.html

Speech Conversion

Text To Speech

Your program can synthesize speech from text, either for immediate playback with the TTS.speak

command or to create a sound file with TTS.speak.toFile.

Your device may come with the text-to-speech engine already enabled and configured, or you may need

to set it up yourself in the Android Settings application. The details vary between different devices and

versions of Android. Typically, the menu navigation looks like one of these:

Settings Voice input & output Text-to-speech settings

Settings Language & input Text-to-speech output

Unless you set an output language in the text-to-speech settings, the speech generated will be spoken in

the current default language of the device. The menu path for setting the default language usually looks

like one of these:

Settings Language and keyboard Select language

Settings Language & input Language

Most speech engines limit the number of characters they are able to speak. The limit is not the same for

all devices or all speech engines, but it is typically around 4000 characters. If you exceed the limit, most

engines fail silently: you don’t get an error message, but you don’t get any speech output, either.

TTS.init

This command must be executed before speaking.

http://developer.android.com/reference/java/util/regex/Pattern.html

Original Author Paul Laughton, 2011 Page 133 De Re BASIC!

TTS.speak <sexp> {, <wait_lexp>}

Speaks the string expression. The statement does not return until the string has been fully spoken,

unless the optional "wait" parameter is present and evaluates to false (numeric 0). Spoken expressions

cannot overlap. A second TTS.speak (or a TTS.speak.toFile) will wait for the speech from an earlier

TTSts.speak to finish, even if the "wait" flag was false.

TTS.speak.toFile <sexp> {, <path_sexp>}

Converts the string expression to speech and writes it into a wav file. You can specify the name and

location of the file with the optional "path" parameter. The default path is "<pref base drive>/rfo-

basic/data/tts.wav". The statement does not return until the speech synthesis is complete, but there is

no guarantee the file-write is finished. If a previous TTS.speak is still speaking, this statement will not

start until that speech completes.

TTS.stop

Waits for any outstanding speech to finish, then releases Android's text-to-speech engine. Following

TTS.stop, if you want to run TTS.speak or TTS.speak.toFile again, you will have to run TTS.init again.

Speech To Text (Voice Recognition)

The Voice Recognition function on Android uses Google Servers to perform the recognition. This means

that you must be connected to the Internet and logged into your Google account for this feature to

work.

There are two commands for Speech to Text: STT.listen and STT.results.

STT.listen starts the voice recognition process with a dialog box. STT.results reports the interpretation

of the voice with a list of strings.

The Speech to Text procedures are different for Graphics Mode, HTML mode and simple Console Output

mode.

STT.listen {<prompt_sexp>}

Start the voice recognize process by displaying a "Speak Now" dialog box. The optional prompt string

expression <prompt_sexp> sets the dialog box’s prompt. If you do not provide the prompt parameter,

the default prompt "BASIC! Speech To Text" is used.

Begin speaking when the dialog box appers.

The recognition will stop when there is a pause in the speaking.

STT.results should be executed next.

Note: STT.listen is not to be used in HTML mode.

STT.results <string_list_ptr_nexp>

Original Author Paul Laughton, 2011 Page 134 De Re BASIC!

The command must not be executed until after a STT.listen is executed (unless in HTML mode).

The recognizer returns several variations of what it thinks it heard as a list of strings. The first string in

the list is the best guess.

The strings are written into the list that <string_list_ptr_nexp> points to. The previous contents of the

list are discarded. If the pointer does not specify a valid string list, and the expression is a numeric

variable, a new list is created and the variable is set to point to the new list.

Console Mode

The following code illustrates the command in Output Console (not HTML mode and not Graphics

mode):

PRINT "Starting Recognizer"

STT.LISTEN

STT.RESULTS theList

LIST.SIZE theList, theSize

FOR k = 1 TO theSize

 LIST.GET theList, k, theText$

 PRINT theText$

NEXT k

END

Graphics Mode

This command sequence is to be used in graphics mode. Graphics mode exists after Gr.open and before

Gr.close. (Note: Graphics mode is temporarily exited after Gr.front 0. Use the Console Mode if you have

called Gr.front 0).

The primary difference is that Gr.render must be called after STT.listen and before STT.results.

PRINT "Starting Recognizer"

STT.LISTEN

GR.RENDER

STT.RESULTS theList

LIST.SIZE theList, theSize

FOR k =1 TO theSize

LIST.GET theList, k, theText$

PRINT theText$

NEXT k

END

HTML Mode

This command sequence is used while in HTML mode. HTML mode exists after HTML.open and before

HTML.close.

The primary difference is that the STT.listen command is not used in HTML mode. The STT.listen

function is performed by means of an HTML datalink sending back the string "STT". The sending of "STT"

by means of the datalink causes the Speak Now dialog box to be displayed.

Original Author Paul Laughton, 2011 Page 135 De Re BASIC!

When the datalink "STT" string is received by the BASIC! program, the STT.results command can be

executed normally as it will contain the recognized text.

The sample file, f37_html_demo.bas, along with the associated html file, htmlDemo1.html (located in

"rfo-basic/data/") demonstrates the use of voice recognition in HTML mode.

Information About Your Android Device

Device <svar>

Returns information about your Android device in the string variable. The items returned are:

 The Device Brand, Device Model, Device Type, and OS

 The Language and Locale

 The PhoneType, PhoneNumber, and DeviceID

 The SN, MCC/MNC, and Network Provider stored on the SIM, if there is one.

The items are separated by newline characters; if you PRINT the returned string, it is displayed with one

item on each line. For the meaning of each item, see Device <nvar>, below.

Device <nexp>|<nvar>

Returns information about your Android device in a Bundle. If you provide a variable that is not a valid

Bundle pointer, the command creates a new Bundle and returns the Bundle pointer in your variable.

Otherwise it writes into the Bundle your variable or expression points to.

The Bundle keys and possible values are in the table below. The Bundle values are all strings.

Key Values Meaning Example (from emulator)

Brand Any string
Brand name assigned by device
manufacturer

generic

Model Any string
Model identifier assigned by device
manufacturer

sdk

Device Any string
Device identifier assigned by device
manufacturer

generic

Product Any string
Product identifier assigned by device
manufacturer

sdk

OS OS Version
Android operating system version
number

4.1.2

Language Language name Default language of this device English

Locale Locale code
Default locale code, typically language
and country

en_US

PhoneType
GSM, CDMA,
SIP, or None

Type of phone radio in this device GSM

PhoneNumber String of digits
Phone number registered to this
device, if any

15555215554

Original Author Paul Laughton, 2011 Page 136 De Re BASIC!

DeviceID String of digits The unique device ID, such as the IMEI 000000000000000

SIM SN
String of digits

or Not available
Serial number of the SIM card,
if one is present and it is accessible

89014103211118510720

SIM MCC/MNC
String of digits

or Not available
The "numeric name" of the provider
of the SIM, if present and accessible

310260

SIM Provider
Name string

or Not available
The name of the provider of the SIM,
if present and accessible

Android

The information returned by the Device command is static. To get dynamic information, use the

Phone.Info command.

Phone.info <nexp>|<nvar>

Returns information about the telephony radio in your Android device, if it has one. The information is

placed in a Bundle. If you provide a variable that is not a valid Bundle pointer, the command creates a

new Bundle and returns the Bundle pointer in your variable. Otherwise it writes into the Bundle your

variable or expression points to.

The Bundle keys and possible values are in the table below. Each entry’s type is either N (Numeric) or S

(String).

Key Type Values Meaning Example

PhoneType S GSM, CDMA, SIP, or None
Type of phone radio in this
device

GSM

NetworkType S

GPRS, EDGE, UMTS, CDMA,
EVDOrev0, EVDOrevA,

1xRTT, HSDPA, HSUPA, HSPA,
iDen, EDVOrevB, LTE, EHRPD,

HSPAP+, or Unknown

Network type of the current
data connection

LTE

The PhoneType is the same as that returned by the Device command. It is static.

If the PhoneType is GSM and the phone is registered to a network, the Phone.info command also

returns the following items in the Bundle:

Key Type Values Meaning Example

CID N
A positive number

or -1 if CID is unknown
GSM Cell ID 342298497

LAC N
A positive number

or -1 if LAC is unknown
GSM Location Area Code 11090

MCC/MNC S String of 5 or 6 decimal digits
The "numeric name" of the
registered network operator

310260

Operator N A name string
The name of the operator of
the registered network

T-Mobile

The "numeric name" is made up of the Mobile Country Code (MCC) and Mobile Network Code (MNC).

Original Author Paul Laughton, 2011 Page 137 De Re BASIC!

If the PhoneType is CDMA and the phone is registered to a network, the Phone.info command also

returns the following items in the Bundle:

Key Type Values Meaning

BaseID N
A positive number

or -1 if BaseID is unknown
CDMA base station identification number

NetworkID N
A positive number

or -1 if NetworkID is unknown
CDMA network identification number

SystemID N
A positive number

or -1 if SystemID is unknown
CDMA system identification number

If your program has executed Phone.rcv.init, then Phone.info may be able to report the strength of the

signal connecting your phone to the cell tower. If the signal strength is available, Phone.info will try to

report it in one or two of the following bundle keys (the first three are mutually exclusive):

Key Type Values Meaning

SignalLevel N A positive number 0 - 4
General measure of signal quality as shown in
status bar. Higher is better.

GsmSignal N
A positive number, 0 - 31

or 99 if unknown
"SignalLevel" unavailable, phone type is GSM,
get GSM level instead.

CdmaDbm N
A negative number, typically
-90 (strong) to -105 (weak)

"SignalLevel" unavailable, phone type is CDMA,
get raw power level in dBm instead.

SignalASU N
0 - 31, 99 (most)
0 - 97, 99 (LTE)

"Arbitrary Strength Units",
range depends on network type.

This information is not available on some Android devices, depending on the device manufacturer and

your wireless carrier.

Screen rotation, size[], realsize[], density

Returns information about your screen.
 Provide numeric variables to get the rotation and density of the screen.

 Provide numeric array variables to get the "application size" and "real size" of the screen.

A size is returned as two values, width first and height second, in a two-element array. If the array

exists, it is overwritten. Otherwise a new array is created.

All parameters are optional. Use commas to indicate omitted parameters (see Optional Parameters).

rotation: The current orientation of your screen relative to the "natural" orientation of your device. The

natural orientation may be portrait or landscape, as defined by the manufacturer. The return value is a

number from 0 to 3. Multiply by 90 to get the rotation in degrees clockwise.

size[]: The size of the screen in pixels available for applications. This excludes system decorations. The

width and height values reflect the current screen orientation.

Original Author Paul Laughton, 2011 Page 138 De Re BASIC!

realsize[]: The current real size of the screen in pixels, including system decorations. NOTE: this value is

available only on devices running Android version 4.2 or later. On other devices, the values will be the

same as in the size[] array parameter.

density: A standardized Android density value in dots per inch (dpi), usually 120, 160, or 240 dpi. This is

not necessarily the real physical density of the screen. This value never changes.

Screen.rotation <nvar>

Returns a number in the <nvar> parameter representing the current orientation of your screen relative

to the "natural" orientation of your device. The natural orientation may be portrait or landscape, as

defined by the manufacturer. The return value is a number from 0 to 3. Multiply by 90 to get the

rotation in degrees clockwise.

Screen.size, size[], realsize[], density

Returns information about the size and density of your screen.
 You may provide numeric array variables to get the "application size" and "real size" of the screen.

A size is returned as two values, width first and height second, in a two-element array. If the array

exists, it is overwritten. Otherwise a new array is created.

 Provide a simple numeric variable to get the density of the screen.

All parameters are optional. Use commas to indicate omitted parameters (see Optional Parameters).

size[]: The size of the screen in pixels available for applications. This excludes system decorations. The

width and height values reflect the current screen orientation.

realsize[]: The current real size of the screen in pixels, including system decorations. NOTE: this value is

available only on devices running Android version 4.2 or later. On other devices, the values will be the

same as in the size[] array parameter.

density: A standardized Android density value in dots per inch (dpi), usually 120, 160, or 240 dpi. This is

not necessarily the real physical density of the screen. This value never changes.

If your program is running in Graphics mode, "SCREEN.SIZE xy[], , dens" returns the same values as

"GR.SCREEN x, y, dens". Unlike Gr.screen, Screen.size also works in Console and HTML modes.

WiFi.info {{<SSID_svar>}{, <BSSID_svar>}{, <MAC_svar>}{, <IP_var>}{,

<speed_nvar>}}

Gets information about the current Wi-Fi connection and places it in the return variables.

All of the parameters are optional; use commas to indicate omitted parameters (see Optional

Parameters). The table shows the available data:

Variable Type Returned Data Format

SSID String SSID of current 802.11 network "name" or hex digits (see below)

Original Author Paul Laughton, 2011 Page 139 De Re BASIC!

BSSID String BSSID of current access point xx:xx:xx:xx:xx:xx (MAC address)

MAC String MAC address of your WiFi xx:xx:xx:xx:xx:xx

IP Numeric or String IP address of your WiFi Number or octets (see below)

speed Numeric Current link speed in Mbps Number

Format notes:

 SSID: If the network is named, the name is returned, surrounded by double quotes. Otherwise the

returned name is a string of hex digits.

 IP: If you provide a numeric variable, your Wi-Fi IP address is returned as a single number. If you

provide a string variable, the number is converted to a standard four-octet string. For example, the

string format 10.70.13.143 is the same IP address as the number -1887287798 (hex 8f82460a).

Running in the Background

Home

The HOME command does exactly what tapping the HOME key would do. The Home Screen is displayed

while the BASIC! program continues to run in the background.

OnBackground:

Interrupt label that traps changes in the Background/Foreground state (see "Interrupt Labels"). BASIC!

executes the statements following the OnBackground: label until it reaches a Background.resume

command. The Background() function should be used to determine the new state.

Background.resume

Resumes execution at the point in the BASIC! program where the OnBackground: interrupt occurred.

WakeLock <code_nexp>

The WakeLock command modifies the system screen timeout function. The <code_nexp> may be one of

five values. Values 1 through 4 modify the screen timeout in various ways. Code value 5 releases the

WakeLock and restores the system screen timeout function.

Code WakeLock Type CPU Screen Keyboard Light
1 Partial WakeLock On* Off Off
2 Screen Dim On Dim Off
3 Screen Bright On Bright Off
4 Full WakeLock On Bright Bright

5 No WakeLock Off Off Off

* If you hold a partial WakeLock, the CPU will continue to run, regardless of any timers

and even after the user taps the power button. In all other WakeLocks, the CPU will run,

but the user can still put the device to sleep using the power button.

Use the WakeLock only when you really need it. Acquiring a WakeLock increases power usage and

decreases battery life. The WakeLock is always released when the program stops running.

http://developer.android.com/reference/android/os/PowerManager.html#PARTIAL_WAKE_LOCK
http://developer.android.com/reference/android/os/PowerManager.html#SCREEN_DIM_WAKE_LOCK
http://developer.android.com/reference/android/os/PowerManager.html#SCREEN_BRIGHT_WAKE_LOCK
http://developer.android.com/reference/android/os/PowerManager.html#FULL_WAKE_LOCK

Original Author Paul Laughton, 2011 Page 140 De Re BASIC!

One of the common uses for WakeLock would be in a music player that needs to keep the music playing

after the system screen timeout interval. Implementing this requires that BASIC! be kept running. One

way to do this is to put BASIC! into an infinite loop:

Audio.load n,"B5b.mp3"

Audio.play n

WakeLock 1

Do

 Pause 30000

Until 0

The screen will turn off when the system screen timeout expires but the music will continue to play.

WifiLock <code_nexp>

The WifiLock command allows your program to keep the WiFi connection awake when a time-out would

normally turn it off. The <code_nexp> may be one of four values. Values 1 through 3 acquire a WifiLock,

changing the way WiFi behaves when the screen turns off. Code value 4 releases the WifiLock and

restores the normal timeout behavior.

Code: WiFiLock Type WiFi Operation When Screen is Off
1 Scan Only WiFi kept active, but only operation is initiating scan

and reporting scan results
2 Full WiFi behaves normally
3 Full High-

Performance
WiFi operates at high performance with minimum

packet loss and low latency*

4 No WiFiLock WiFi turns off (may be settable on some devices)

*Full Hi-Perf mode is not available on all Android devices. Devices running Android 3.0.x

or earlier, and devices without the necessary hardware, will run in Full mode instead.

Use WifiLock only when you really need it. Acquiring a WifiLock increases power usage and decreases

battery life. The WifiLock is always released when the program stops running.

Miscellaneous Commands

Headset <state_nvar>, <type_svar>, <mic_nvar>

Reports if there is a headset plugged into your device, and returns data about the headset. The

parameters are all names of variables that receive the data:

 <state_nvar>: 1.0 if a headset is plugged in, 0.0 if no headset is plugged in, and -1.0 if

unknown.

 <type_svar>: A string describing the device type of the last headset known to your device.

 <mic_nvar>: 1.0 if the headset has a microphone, 0.0 if the headset does not have a

microphone, and -1.0 if unknown.

http://developer.android.com/reference/android/net/wifi/WifiManager.html#WIFI_MODE_SCAN_ONLY
http://developer.android.com/reference/android/net/wifi/WifiManager.html#WIFI_MODE_FULL
http://developer.android.com/reference/android/net/wifi/WifiManager.html#WIFI_MODE_FULL_HIGH_PERF

Original Author Paul Laughton, 2011 Page 141 De Re BASIC!

If you plug in or unplug a headset, new information becomes available. Your program must run the

Headset command again to get the update.

Notify <title_sexp>, <subtitle_sexp>, <alert_sexp>, <wait_lexp>

This command will cause a Notify object to be placed in the Notify (Status) bar. The Notify object

displays the BASIC! app icon and the <alert_sexp> text. The user taps the Notify object to open the

notification window. Your program’s notification displays the <title_sexp> and <subtitle_sexp> text.

The code snippet and screenshots shown below demonstrate the placement of the parameter strings.

If <wait_lexp> is not zero (true), then the execution of the BASIC! program will be suspended until the

user taps the Notify object. If the value is zero (false), the BASIC! program will continue executing.

The Notify object will be removed when the user taps the object, or when the program exits.

Print "Executing Notify"

Notify "BASIC! Notify", "Tap to resume running program",~

"BASIC! Notify Alert", 1

! Execution is suspended and waiting for user to tap the Notify Object

Print "Notified"

Note: the icon that appears in the Notify object will be the icon for the application in user-built apk.

Pause <ticks_nexp>

Stops the execution of the BASIC! program for <ticks_nexp> milliseconds. One millisecond = 1/1000 of a

second. Pause 1000 will pause the program for one second. A pause can not be interrupted.

An infinite loop can be a very useful construct in your programs. For example, you may use it to wait for

the user to tap a control on the screen. A tight spin loop keeps BASIC! very busy doing nothing. A Pause,

Original Author Paul Laughton, 2011 Page 142 De Re BASIC!

even a short one, reduces the load on the CPU and the drain on the battery. Depending on your

application, you may want to add a Pause to the loop to conserve battery power:

DO : PAUSE 50 : UNTIL x <> 0

Swap <nvar_a>|<svar_a>, <nvar_b>|<svar_b>

The values and in "a" and "b" numeric or string variables are swapped.

Tone <frequency_nexp>, <duration_nexp> {, <duration_chk_lexp}

Plays a tone of the specified frequency in hertz (cycles per second) for the specified duration in

milliseconds.

The duration produced does not exactly match the specified duration. If you need to get an exact

duration, experiment.

Each Android device has a minimum tone duration. By default, if you specify a duration less than this

minimum, you get a run-time error message giving the minimum for your device. However, you can

suppress the check by setting the optional duration check flag <duration_chk_lexp> to 0 (false). If you do

this, the result you get depends on your device. You will not get a run-time error message, but you may

or may not get the tone you expect.

Vibrate <pattern_array[{<start>,<length>}]>,<nexp>

The vibrate command causes the device to vibrate in the specified pattern. The pattern is held in a

numeric array (pattern_array[]) or array segment (pattern_array[start,length]).

The pattern is of the form: pause-time, on-time, …, pause-time, on-time. The values for pause-time and

on-time are durations in milliseconds. The pattern may be of any length. There must be at least two

values to get a single buzz because the first value is a pause.

If <nexp> = -1 then the pattern will play once and not repeat.

If <nexp> = 0 then the pattern will continue to play over and over again until the program ends.

If <nexp> > 0 then the pattern play will be cancelled.

See the sample program, f21_sos.bas, for an example of Vibrate.

VolKeys

Certain keys and buttons have special meaning to your Android device. By default, BASIC! propagates

these special keycodes to the Android system, even if your program detects them. So, for example,

when you press the "Volume Up" button, your program can catch it (see INKEY$), but you still see the

Volume Control window open on your screen, and your audio gets louder.

The VolKeys.off and VolKeys.on commands let you control this behavior for five keys. These keys may

be on the Android device or on a headset plugged into the device.

Original Author Paul Laughton, 2011 Page 143 De Re BASIC!

Key Name
(Android docs)

Key Code
(decimal)

Usual Action

VOLUME_UP 24 Increase speaker volume

VOLUME_DOWN 25 Decrease speaker volume

VOLUME_MUTE 164 Mute the speaker (Android 3.0 or later)

MUTE 91 Mute the microphone

HEADSETHOOK 79 Hang up a call, stop media playback

VolKeys.off

Disables the usual action of the keys listed in the VolKeys table, above. Your program can still detect

these keypresses, but BASIC! does not pass the events on to the Android system.

VolKeys.on

Enables the usual action of the keys listed in the VolKeys table, above. This is the default setting when

your BASIC! program starts.

SQLITE

Overview

The Android operating system provides the ability to create, maintain and access SQLite databases.

SQLite implements a self-contained, serverless, zero-configuration, transactional SQL database engine.

SQLite is the most widely deployed SQL database engine in the world. The full details about SQLite can

be found at the SQLite Home Page (http://www.sqlite.org/).

An excellent online tutorial on SQL can be found at www.w3schools.com

(http://www.w3schools.com/sql/default.asp).

Database files will be created on the base drive (usually the SD card) in the directory, "<pref base

drive>/rfo-basic/databases/ ".

SQLITE Commands

Sql.open <DB_pointer_nvar>, <DB_name_sexp>

Opens a database for access. If the database does not exist, it will be created.

<DB_pointer_nvar> is a pointer to the newly opened database. This value will be set by the sql.open

command operation. <DB_pointer_nvar> is used in subsequent database commands and should not be

altered.

<DB_name_sexp> is the filename used to hold this database. The base reference directory is "<pref base

drive>/com.rfo.basic/databases/". If <DB_name_sexp> = ":memory:" then a temporary database will be

created in memory.

http://www.sqlite.org/selfcontained.html
http://www.sqlite.org/serverless.html
http://www.sqlite.org/zeroconf.html
http://www.sqlite.org/transactional.html
http://www.sqlite.org/mostdeployed.html
http://www.sqlite.org/
http://www.sqlite.org/
http://www.w3schools.com/sql/default.asp

Original Author Paul Laughton, 2011 Page 144 De Re BASIC!

Note: You may have more than one database opened at same time. Each opened database must have its

own, distinct pointer.

Sql.close <DB_pointer_nvar>

Closes a previously opened database. <DB_pointer_nvar> will be set to zero. The variable may then be

reused in another sql.open command. You should always close an opened database when you are done

with it. Not closing a database can reduce the amount of memory available on your Android device.

Sql.new_table <DB_pointer_nvar>, <table_name_sexp>, C1$, C2$, ...,CN$

A single database may contain many tables. A table is made of rows of data. A row of data consists of

columns of values. Each value column has a column name associated with it.

This command creates a new table with the name <table_name_sexp> in the referenced opened

database. The column names for that table are defined by the following: C1$, C2$, ..., CN$. At least one

column name is required. You may create as many column names as you need.

BASIC! always adds a Row Index Column named "_id" to every table. The value in this Row Index Column

is automatically incremented by one for each new row inserted. This gives each row in the table a

unique identifier. This identifier can be used to connect information in one table to another table. For

example, the _id value for customer information in a customer table can be used to link specific orders

to specific customers in an outstanding order database.

Sql.drop_table <DB_pointer_nvar>, <table_name_sexp>

The table named <table_name_sexp> in the opened database pointed to by <DB_pointer_nvar> will be

dropped from the database if the table exists.

Sql.insert <DB_pointer_nvar>, <table_name_sexp>, C1$, V1$, C2$, V2$, ..., CN$, VN$

Inserts a new row of data columns and values into a table in a previously opened database.

The <table_name_sexp> is the name of the table into which the data is to be inserted. All newly inserted

rows are inserted after the last, existing row of the table.

C1$, V1$, C2$, V2$, ..., CN$, VN$: The column name and value pairs for the new row. These parameters

must be in pairs. The column names must match the column names used to create the table. Note that

the values are all strings. When you need a numeric value for a column, use the BASIC! STR$(n) to

convert the number into a string. You can also use the BASIC! FORMAT$(pattern$, N) to create a

formatted number for a value. (The Values-as-strings requirement is a BASIC! SQL Interface

requirement, not a SQLite requirement. While SQLite, itself, stores all values as strings, it provides

transparent conversions to other data types. I have chosen not to complicate the interface with access

to these SQLite conversions since BASIC! provides its own conversion capabilities.)

Original Author Paul Laughton, 2011 Page 145 De Re BASIC!

Sql.query <cursor_nvar>, <DB_pointer_nvar>, <table_name_sexp>, <columns_sexp> {,

<where_sexp> {, <order_sexp>} }

Queries a table of a previously-opened database for some specific data. The command returns a Cursor

named <Cursor_nvar> to be used in stepping through Query results.

The <columns_sexp> is a string expression with a list of the names of the columns to be returned. The

column names must be separated by commas. An example is Columns$ = "First_name, Last_name, Sex,

Age". If you want to get the automatically incremented Row Index Column then include the "_id"

column name in your column list. Columns may be listed in any order. The column order used in the

query will be the order in which the rows are returned.

The optional <where_sexp> is an SQL expression string used to select which rows to return. In general,

an SQL expression is of the form <Column Name> <operator> <Value>. For example, Where$ =

"First_name = 'John' " Note that the Value must be contained in single quotes. Full details about the SQL

expressions can be found here. If the Where parameter is omitted, all rows will be returned.

The optional <order_sexp> specifies the order in which the rows are to be returned. It identifies the

column upon which the output rows are to be sorted. It also specifies whether the rows are to be sorted

in ascending (ASC) or descending (DESC) order. For example, Order$ = "Last_Name ASC" would return

the rows sorted by Last_Name from A to Z. If the Order parameter is omitted, the rows are not sorted.

If the Order parameter is present, the Where parameter must be present. If you want to return all rows,

just set Where$ = ""

Sql.query.length <length_nvar>, <cursor_nvar>

Report the number of records returned by a previous Query command, Given the Cursor returned by a

Query, the command writes the number of records into <length_nvar>. This command cannot be used

after all of the data has been read.

Sql.query.position <position_nvar>, <cursor_nvar>

Report the record number most recently read using the Cursor of a Query command. Given the Cursor

returned by a Query, the command writes the position of the Cursor into <Position_nvar>. Before the

first Next command, the Position is 0. It is incremented by each Next command. A Next command after

the last row is read sets its Done variable to true and resets the Cursor to 0. The Cursor can no longer be

used, and this command can no longer be used with that Cursor.

Sql.next <done_lvar>, <cursor_nvar>{, <cv_svars>}

Using the Cursor generated by a previous Query command (Sql.query or Sql.raw_query), step to the

next row of data returned by the Query and retrieve the data.

<done_lvar> is a Boolean variable that signals when the last row of the Query data has been read.

<cursor_nvar> is a numeric variable that holds the Cursor pointer returned by a Query command. You

may have more than one Cursor open at a time.

http://www.sqlite.org/lang_expr.html

Original Author Paul Laughton, 2011 Page 146 De Re BASIC!

<cv_svars> is an optional set of column value string variables that return data from the database to your

program. The Cursor carries the values from the table columns listed in the Query. Sql.next retrieves

one row from the Cursor as string values and writes them into the <cv_svars>. If any of your columns are

numeric, you can use the BASIC! VAL(str$) function to convert the strings to numbers.

When this command reads a row of data, it sets the Done flag <done_lvar> to false (0.0). If it finds no

data to read, it changes the Done flag to true (1.0) and resets the cursor variable <cursor_nvar> to zero.

The Cursor can no longer be used for Sql.next operations. The cursor variable may be used with another

Cursor from a different Query.

In its simplest form, <cv_svars> is a comma-separated list of string variable names. Each variable

receives the data of one column. If there are more variables than columns, the excess variables are left

unchanged. If there are more columns than variables, the excess data are discarded.

SQL.NEXT done, cursor, cv1$, cv2$, cv3$ % get data from up to three columns

The last (or only) variable may be a string array name with no index(es):

SQL.NEXT done, cursor, cv$[] % get data from ALL available columns

The data from any column(s) that are not written to string variables are written into the array. If no

column data are written to the array, the array has one element, an empty string "". If the variable

names an array that already exists, it is overwritten.

If the last (or only) <cv_svars> variable is an array, you may also add (after another comma) a numeric

variable <ncol_nvar>. This variable receives the total number of columns in the cursor. Note that this is

not necessarily the same as the size of the array.

SQL.NEXT done, cursor, cv[]$, nCols % report number of columns available

The full specification for this command, including the optional array and column count, is as follows:

Sql.next <done_lvar>, <cursor_nvar> {, svar}... {, array$[] {, <ncol_nvar>}}

Sql.delete <DB_pointer_nvar>, <table_name_sexp>{,<where_sexp>{,<count_nvar>} }

From the named table of a previously opened database, delete rows selected by the conditions

established by the Where string expression. The Count variable reports the number of rows deleted.

The formation of the Where string is exactly the same as described in the Sql.query command. Both

Where and Count are optional. If the Where string is omitted all rows are deleted, and the Count

variable must be omitted, too.

Sql.update <DB_pointer_nvar>, <table_name_sexp>, C1$, V1$, C2$, V2$,...,CN$, VN${:

<where_sexp>}

In the named table of a previously opened database, change column values in specific rows selected by

the Where$ parameter <where_sexp>. The C$,V$ parameters must be in pairs. The colon character

Original Author Paul Laughton, 2011 Page 147 De Re BASIC!

terminates the C$,V$ list and must precede the Where$ in this command. The Where$ parameter and

preceding colon are optional.

BASIC! also uses the colon character to separate multiple commands on a single line. The use of a colon

in this command conflicts with that feature. Use caution when using both together.

If you put a colon on a line after this command, the pre-processor always assumes the colon is part of

the command and not a command separator. If you are not certain of the outcome, the safest action is

to put the Sql.update command on a line by itself, or at the end of a multi-command line.

Sql.exec <DB_pointer_nvar>, <command_sexp>

Execute ANY non-query SQL command string ("CREATE TABLE", "DELETE", "INSERT", etc.) using a

previously opened database.

Sql.raw_query <cursor_nvar>, <DB_pointer_nvar>, <query_sexp>

Execute ANY SQL Query command using a previously opened database and return a Cursor for the

results.

Graphics

Introduction

The Graphics Screen and Graphics Mode

Graphics are displayed on a new screen that is different from the BASIC! Text Output Screen. The Text

Output Screen still exists and can still be written to. You can be returned to the text screen using the

BACK key or by having the program execute the Gr.front command.

The Gr.open command opens the graphics screen and puts BASIC! into the graphics mode. BASIC! must

be in graphics mode before any other graphics commands can be executed. Attempting to execute any

graphics command when not in the graphics mode will result in a run-time error. The Gr.close command

closes the graphics screen and turns off graphics mode. The graphics mode automatically turns off when

the BACK key or MENU key is tapped. BASIC! will continue to run after the BACK key or MENU key is

tapped when in graphics mode but the Output Console will be shown.

The BASIC! Output Console is hidden when the graphics screen is being displayed. No run-time error

messages will be observable. A haptic feedback alert signals a run-time error. This haptic feedback will

be a distinct, short buzz. Tap the BACK key to close the Graphics Screen upon feeling this alert. The error

messages can then read from the BASIC! Output Console.

Use the Gr.front command to swap the front-most screen between the Output Console and the graphics

screen.

Commands that use a new window or screen to interact with the user (Input, Select and others) may be

used in graphics mode.

Original Author Paul Laughton, 2011 Page 148 De Re BASIC!

When your program ends, the graphics screen will be closed. If you want to keep the graphics screen

showing, use a long pause or an infinite loop to keep the program from ending:

! Stay running to keep the graphics screen showing

do

until 0

Depending on your application, you may want to add a Pause to the loop to conserve battery power.

Tap the BACK key to break out of the infinite loop. The BACK key ends your program unless you trap it

with the OnBackKey: interrupt label.

Display Lists

Each command that draws a graphical object (line, circle, text, etc.) places that object on a list called the

Object List. The command returns the object's Object Number. This Object Number, or Object Pointer, is

the object’s position in the Object List. This Object Number can be used to change the object on the fly.

You can change the parameters of any object in the Object List with the Gr.modify command. This

feature allows you easily to create animations without the overhead of having to recreate every object

in the Object List.

To draw graphical objects on the graphics screen, BASIC! uses a Display List. The Display List contains

pointers to graphical objects on the Object List. Each time a graphical object is added to the Object List,

its Object Number is also added to the Display List. Objects are drawn on the screen in the order in

which they appear in the Display List. The Display List objects are not visible on the screen until the

Gr.render command is called.

You may use the Gr.NewDL command to replace the current Display List with a custom display list array.

This custom display list array may contain some or all of the Object Numbers in the Object List.

One use for custom display lists is to change the Z order of the objects. In other words you can use this

feature to change which objects will be drawn on top of other objects.

See the Sample Program file, f24_newdl, for a working example of Gr.NewDL.

Drawing Coordinates

The size and location of an object drawn on the screen are specified in pixels. The coordinates of the

pixel at the upper-left corner of the screen are x = 0 (horizontal position) and y = 0 (vertical position).

Coordinate values increase from left to right and from top to bottom of the screen.

Coordinates are measured with respect to the physical screen, not to anything on it. If you choose to

show the Android Status Bar, anything you draw at the top of the screen is covered by the Status Bar.

Drawing into Bitmaps

You can draw into bitmaps in addition to drawing directly to the screen. You notify BASIC! that you want

to start drawing into a bitmap instead of the screen with the Gr.bitmap.drawinto.start command. This

puts BASIC! into the draw-into-bitmap mode. All draw commands issued while in this mode will draw

Original Author Paul Laughton, 2011 Page 149 De Re BASIC!

directly into the bitmap. The objects drawn in this mode will not be placed into the Object List. The

Object Number returned by a draw command while in this mode is invalid and should not be used for

any purpose including Gr.modify.

The draw-into-bitmap mode is ended by the Gr.bitmap.drawinto.end command. Subsequent draw

commands will place the objects on the Object List and object numbers in the Display List for rendering

on the screen. If you wish to display the drawn-into bitmap on the screen, issue a Gr.bitmap.draw

command for that bitmap. The drawn-into bitmap may be drawn at any time before, during or after the

draw-into process.

Colors

BASIC! colors consist of a mixture of Red, Green, and Blue. Each component has a numerical value

ranging from 0 to 255. Black occurs when all three values are zero. White occurs when all three values

are 255. Solid Red occurs with a Redvalue of 255 while Blue and Green are zero.

Colors also have what is called an Alpha Channel. The Alpha Channel describes the level of opaqueness

of the color. An Alpha value of 255 is totally opaque. No object of any color can show through an object

with an Alpha value of 255. An Alpha value of zero renders the object invisible.

Paints

BASIC! holds drawing information such as color, font size, style and so forth, in Paint objects. The Paint

objects are stored in a Paint List. The last created Paint object (the "Current Paint") is associated with a

graphical object when a draw command is executed. The Paint tells the renderer (see Gr.render) how to

draw the graphical object. The same Paint may be attached to many graphical objects so they will all be

drawn with the same color, style, etc.

Basic usage

You can ignore Paints. This can keep your graphics programming simpler.

Each command that changes a drawing setting (Gr.color, Gr.text.size, etc.) affects everything you draw

from that point on, until you execute another such command.

Advanced usage

You can control the Paint objects used to draw graphical objects. The extra complexity allows you to

create special effects that are not otherwise possible. To use these effects, you must understand the

Paint List and the Current Paint.

Each command that changes a drawing setting (Gr.color, Gr.text.size, etc.) creates or modifies a Paint.

Each of these commands has an optional "Paint pointer" parameter. If you don’t specify which Paint to

use, the command first copies the Current Paint and then modifies it to make a new Paint, which then

becomes the Current Paint. If you do specify which Paint to use, the command modifies only the

specified Paint, leaving the Current Paint unchanged.

Original Author Paul Laughton, 2011 Page 150 De Re BASIC!

The Current Paint is always the last Paint on the Paint List.If you specify the Paint object, the pointer

values -1 and 0 are special.

Paint pointer value -1 means the Current Paint. Using -1 is the same as omitting the Paint pointer

parameter.

Paint pointer value 0 refers to a "working Paint". You can change it as often as you like without

generating a new Paint. Paint 0 can not be attached to a graphical object. To make it useful, you must

copy it (Gr.paint.copy) to another location in the Paint List, or to the Current Paint.

You can get a pointer to the current Paint with the Gr.paint.get command. You can get a pointer to the

Paint associated with any graphical object by using the "paint" tag with Gr.get.value command. You can

assign that Paint to any other graphical object by using the "paint" tag with Gr.modify command.

Paints can not be individually deleted. You may delete all Paint objects, along with all graphics objects,

with Gr.cls.

The commands Gr.paint.copy and Gr.paint.reset operate directly on Paint objects.

Style

Most graphics objects are made up of two parts: an outline and the center. There is a subtle but

important difference in the rules governing how each part is drawn. The two parts are controlled by the

style setting of the Paint object, set by the style parameter of the Gr.color command.

Note: Gr.Point and Gr.Line are not affected by style. Only the STROKE part (outline) is drawn.

STROKE

If you specify STROKE (style 0), only the outline is drawn. The center of the shape is not colored. The

width of the outline is controlled by the stroke weight setting of the Paint, set by the Gr.stroke

command. If the stroke weight is 0 or 1 (they behave the same way), the outline is drawn exactly on the

coordinates you provide. For example, if the shape is a rectangle:

left: The left-most edge. All pixels with x-coordinate left are colored.

top: The upper-most edge. All pixels with y-coordinate top are colored.

right: The right-most edge. All pixels with x-coord right are colored.

bottom: The lower-most edge. All pixels with y-coord bottom are colored.

This is probably what you expect.

When you increase the stroke weight, the lines get wider, but the centers of the lines do not change.

Additional lines of pixels are colored on both sides of the outline. Increasing the stroke weight generally

increases the area of the shape, making it larger than the dimensions you specify.

This may not be what you expect. In some drawing systems, increasing the line width grows the line

inward only, toward the center of the shape, so the shape does not get any bigger.

Original Author Paul Laughton, 2011 Page 151 De Re BASIC!

FILL

If you specify FILL (style 1), the center of the shape is filled as if it had an outline. That is, the center of

the object is colored, but the pixels colored by STROKE may be left uncolored. The area that is colored

depends on the coordinates of the shape. For example, consider a rectangle:

left: The left-most edge. All pixels with x-coordinate left are colored.

top: The upper-most edge. All pixels with y-coordinate top are colored.

right: One more than the right-most edge. All pixels with x-coord right - 1 are colored.

bottom: One more than the lower-most edge. Pixels with y-coord bottom - 1 are colored.

left and top values are "inclusive": pixels with x-coodinate left are colored. Pixels with y-coordinate top

are colored.

right and bottom values are "exclusive": pixels with x-coodinate right are not colored. Pixels with y-

coordinate bottom are not colored.

This is not what most people expect, but it is consistent with many operations in Java programming.

STROKE and FILL

If you specify STROKE_AND_FILL (style 2), both parts of the shape are drawn and superimposed. That is,

the outline is drawn as described in STROKE, above, and the object is filled in as described in FILL.

Because both parts are the same color, and there are never uncolored pixels beween the STROKE lines

and the FILL area, the effect is to draw a single solid shape. Note that increasing the stroke weight

generally makes the shape bigger than the dimensions you specify.

Hardware-accelerated Graphics

Many Android devices since 3.0 (Honeycomb) support hardware acceleration of some graphical

operations. An app that can use the hardware Graphics Processor (GPU) may run significantly faster

than one that cannot use the GPU. Some of BASIC!’s graphical operations do not work with hardware-

acceleration, so it is disabled by default. You can turn it on with the Graphic Acceleration item of the

Editor->Menu->Preferences screen.

If you enable accelerated graphics, test your app thoroughly, comparing it to what you see with

acceleration off. If you see blurring, missing objects, or other problems, leave acceleration disabled.

Graphics Setup Commands

Gr.open {{alpha}{, red}{, green}{, blue}{, <ShowStatusBar_lexp>}{,

<Orientation_nexp>}}

Opens the Graphics Screen and puts BASIC! into Graphics Mode. The color values become the

background color of the graphics screen. The default color is opaque white (255,255,255,255).

All parameters are optional; use commas to indicate omitted parameters (see Optional Parameters).

Original Author Paul Laughton, 2011 Page 152 De Re BASIC!

Each of the four color components is a numeric expression with a value from 0 through 255. If a value is

outside of this range, only the last eight bits of the value are used; for example, 257 and 1025 are the

same as 1. If any color parameter is omitted, it is set to 255.

The Status Bar will be shown on the graphics screen if the <ShowStatusBar_lexp> is true (not zero). If the

<ShowStatusBar_lexp> is not present, the Status Bar will not be shown.

The orientation upon opening graphics will be determined by the <Orientation_nexp> value.

<Orientation_nexp> values are the same as values for the Gr.orientation command (see below). If the

<Orientation_nexp> is not present, the default orientation is Landscape.

Gr.color {{alpha}{, red}{, green}{, blue}{, style}{, paint}}

Sets the color and style for drawing objects. There are two ways to use this command.

 Basic usage: ignore the optional <paint> parameter. The new color and style will be used for

whatever graphical objects are subsequently drawn until the next Gr.color command is executed.

 Advanced usage: The "basic usage" of this command always creates a new Paint. If you prefer, you

can use the <paint> parameter to specify an existing Paint. The Gr.color command sets the color and

style of that Paint, changing the appearance of any graphical object to which it is attached. The

current Paint is not changed. See "Paints Advanced Usage" above and the example below.

All of the parameters are optional. If a color component or the style is omitted, that component is left

unchanged. For example, Gr.color ,,0 sets only green to 0, leaving alpha, red, blue, and style as they

were. Use commas to indicate omitted parameters (see Optional Parameters).

Each of the four color components (alpha, red, green, blue) is a numeric expression with a value from 0

through 255. If a value is outside of this range, only the last eight bits of the value are used; for example,

257 and 1025 are both the same as 1.

The style parameter, is a numeric expression that determines the stroking and filling of objects. The

effect of this parameter is explained in detail in the "Style" sections, see above. The possible values for

<style_nexp> are shown in this table:

Value Meaning Description

0 STROKE Geometry and text drawn with this style will be stroked (outlined),
respecting the stroke-related fields on the paint.

1 FILL Geometry and text drawn with this style will be filled, ignoring all
stroke-related settings in the paint.

2 STROKE_AND_FILL Geometry and text drawn with this style will be filled and stroked at the
same time, respecting the stroke-related fields on the paint.

If you specify a value other than -1, 0, 1, or 2, then the style is set to 2. If you specify a style of -1, the

style is left unchanged, just as if the style parameter were omitted. If you never set a style, the default

value is 1, FILL.

Original Author Paul Laughton, 2011 Page 153 De Re BASIC!

You can change the stroke weight with commands such as Gr.set.stroke (see below) and the various text

style commands.

Example:
GR.OPEN

! basic usage

GR.COLOR ,0,0,255,2 % opaque blue, stroke and fill

GR.RECT r1, 50,50,100,100 % draw two squares

GR.RECT r2, 100,100,150,150

GR.COLOR 128,255,0,0 % half-transparent red

GR.RECT r3, 75,75,125,125 % draw an overlapping square

GR.RENDER : PAUSE 2000

! advanced usage

GR.GET.VALUE r1, "paint", p % get index of first Paint

GR.COLOR 255,0,255,0,,p % change that Paint’s color to opaque green

GR.RENDER : PAUSE 2000 % both r1 and r2 change

GR.RECT r4, 125,125,175,175 % use current Paint, unchanged

GR.RENDER : PAUSE 2000 % still draws half-transparent red

GR.CLOSE : END

Gr.set.antialias {{<lexp>}{,<paint_nexp>}}

Turns antialiasing on or off on objects drawn after this command is issued:
 If the value of the antialias setting parameter <lexp> is false (0), AntiAlias is turned off.

 If the parameter value is true (not zero), AntiAlias is turned on.

 If the parameter is omitted, the AntiAlias setting is toggled.

AntiAlias should generally be on. It is on by default.

AntiAlias must be off to draw single-pixel pixels and single-pixel-wide horizontal and vertical lines.

You may use the optional Paint pointer parameter <paint_nexp> to specify a Paint object to modify.

Normally this parameter is omitted. See Gr.color, Advanced usage for more information.

Gr.set.stroke {{<nexp>}{,<paint_nexp>}}

Sets the line width of objects drawn after this command is issued. The <nexp> value must be >=0. Zero

produces the thinnest line and is the default stroke value.

The thinnest horizontal lines and vertical lines will be two pixels wide if AntiAlias is on. Turn AntiAlias off

to draw single-pixel-wide horizontal and vertical lines.

Pixels drawn by the Gr.set.pixels command will be drawn as a 2x2 matrix if AntiAlias is on. To draw

single-pixel pixels, set AntiAlias off and set the stroke = 0.

You may use the optional Paint pointer parameter <paint_nexp> to specify a Paint object to modify.

Normally this parameter is omitted. See Gr.color, Advanced usage for more information.

Gr.orientation <nexp>

The value of the <nexp> sets the orientation of screen as follows:

Original Author Paul Laughton, 2011 Page 154 De Re BASIC!

-1 = Orientation depends upon the sensors.

 0 = Orientation is forced to Landscape.

 1 = Orientation is forced to Portrait.

 2 = Orientation is forced to Reverse Landscape.

 3 = Orientation is forced to Reverse Portrait.

You can monitor changes in orientation by reading the screen width and height using the the Gr.screen

or Screen commands.

Gr.statusbar {<height_nvar>} {, showing_lvar}

Returns information about the Status Bar. If the height variable <height_nvar> is present, it is set to the

nominal height of the Status Bar. If the showing flag <showing_lvar> is present, it is set to 0 (false, not

showing) or 1 (true, showing) based on on how Graphics Mode was opened.

The parameters are both optional. If you omit the first parameter but use the second, you must keep

the comma.

Gr.statusbar.show <nexp>

This command has been deprecated. To show the status bar on the graphics screen, use the optional

fifth parameter in Gr.open.

Gr.render

This command displays all the objects that are listed in the current working Display List. It is not

necessary to have a Pause command after a Gr.render. The Gr.render command will not complete until

the contents of the Display List have been fully displayed.

Gr.render always waits until the next screen refresh. Most Android devices refresh the screen 60 times

per second; your device may be faster or slower. Therefore, if you execute two consecutive Gr.render

commands, there will be a delay of 16.7 milliseconds (on most devices) between the two commands.

For smooth animation, try to avoid doing more than 16.7 ms of work between Gr.render commands, to

achieve the maximum refresh rate. This is not a lot of time for a BASIC! program, so you may have to

settle for a lower frame rate. However, there is no benefit to trying to render more often than 16.7 ms.

If BASIC! is running in the background (see Background() function and Home command), Gr.render will

not execute. It will pause your program until you return BASIC! to the foreground.

Gr.screen width, height{, density }

Returns the screen's width and height, and optionally its density, in the numeric variables. The density,

in dots per inch (dpi), is a standardized Android density value (usually 120, 160, or 240 dpi), and not

necessarily the real physical density of the screen.

If a Gr.orientation command changes the orientation, the width and height values from a previous

Gr.screen command are invalid.

Original Author Paul Laughton, 2011 Page 155 De Re BASIC!

Android’s orientation-change animation takes time. You may need to wait for a second or so after

Gr.open or Gr.orientation before executing Gr.screen, otherwise the width and height values may be

set before the orientation change is complete.

Gr.screen returns a subset of the information returned by the newer Screen command.

Gr.scale x_factor, y_factor

Scale all drawing commands by the numeric x and y scale factors. This command is provided to allow

you to draw in a device-independent manner and then scale the drawing to the actual size of the screen

that your program is running on. For example:

! Set the device independent sizes

di_height = 480

di_width = 800

! Get the actual width and height

gr.open % defaults: white, no status bar, landscape

gr.screen actual_w, actual_h

! Calculate the scale factors

scale_width = actual_w /di_width

scale_height = actual_h /di_height

! Set the scale

gr.scale scale_width, scale_height

Now, start drawing based upon di_height and di_width. The drawings will be scaled to fit the device

running the program.

Gr.cls

Clears the graphics screen. Deletes all previously drawn objects; all existing object references are invalid.

Deletes all existing Paints and resets all Gr.color or Gr.text {size|align|bold|strike|underline|skew}

settings. Disposes of the current Object List and Display List and creates a new Initial Display List.

Note: bitmaps are not deleted. They will not be drawn because no graphical objects point to them, but

the bitmaps still exist. Variables that point to them remain valid.

The Gr.render command must be called to make the cleared screen visible to the user.

Gr.close

Closes the opened graphics mode. The program will continue to run. The graphics screen will be

removed. The text output screen will be displayed.

Gr.front flag

Determines whether the graphics screen or the Output Console will be the front-most screen. If flag = 0,

the Output Console will be the front-most screen and seen by the user. If flag <> 0, the graphics screen

will be the front-most screen and seen by the user.

Original Author Paul Laughton, 2011 Page 156 De Re BASIC!

One use for this command is to display the Output Console to the user while in graphics mode. Use

Gr.front 0 to show text output and Gr.front 1 to switch back to the graphics screen.

Note: When the Output Console is in front of the graphics screen, you can still draw (but not render)

onto the graphics screen. The Gr.front 1 must be executed before any Gr.render.

Print commands will continue to print to the Output Console even while the graphic screen is in front.

Gr.brightness <nexp>

Sets the brightness of the graphics screen. The value of the numeric expression should be between 0.01

(darkest) and 1.00 (brightest).

Graphical Object Creation Commands

These commands create graphical objects and add them to the Object List, also adding their Object

Numbers to the Display List. You create each object with parameters that describe what to draw and

where. Once it is created, you can read back its parameters by name with the Gr.get.value command.

You can change any parameter with the Gr.modify command. The parameters you can modify are listed

with each command's description. Along with the parameters listed with each command, every

graphical object has two other modifiable parameters, "paint" and "alpha". See the Gr.modify and

Gr.paint.get command descriptions for more details.

There are three commands that create graphical objects that are not in this section: Gr.text.draw,

Gr.bitmap.draw, and Gr.clip.

Gr.point <obj_nvar>, x, y

Creates a point object. The point will be located at (x,y). The <obj_nvar> returns the Object List object

number for this point. This object will not be visible until the Gr.render command is called.

The appearance of the point object is affected by the current stroke weight and the AntiAlias setting.

The object is rendered as a square, centered on (x,y) and as big as the current stroke. If AntiAlias is on, it

will blur the point, making it larger and dimmer. To color a single pixel, use Gr.set.stroke 0 and

Gr.set.antialias 0.

The Gr.modify parameters for Gr.point are: "x" and "y".

Gr.line <obj_nvar>, x1, y1, x2, y2

Creates a line object. The line will start at (x1,y1) and end at (x2,y2). The <obj_nvar> returns the Object

List object number for this line. This object will not be visible until the Gr.render command is called.

The thinnest horizontal lines and vertical lines are drawn with Gr.set.stroke 0. These lines will be two

pixels wide if AntiAlias is on. Turn AntiAlias off to draw single-pixel wide horizontal and vertical lines.

The Gr.modify parameters for Gr.line are: "x1", "y1", "x2" and "y2".

Original Author Paul Laughton, 2011 Page 157 De Re BASIC!

Gr.rect <ob_nvar>, left, top, right, bottom

Creates a rectangle object. The rectangle will be located within the bounds of the parameters. The

rectangle will or will not be filled depending upon the Gr.color style parameter. The <obj_nvar> returns

the Object List object number for this rectangle. This object will not be visible until the Gr.render

command is called.

The Gr.modify parameters for Gr.rect are: "left", "top", "right" and "bottom".

Gr.oval <obj_nvar>, left, top, right, bottom

Creates an oval-shaped object. The oval will be located within the bounds of the parameters. The oval

will or will not be filled depending upon the Gr.color style parameter. The <obj_nvar> returns the Object

List object number for this oval. This object will not be visible until the Gr.render command is called.

The Gr.modify parameters for Gr.oval are: "left", "top", "right" and "bottom".

Gr.arc <obj_nvar>, left, top, right, bottom, start_angle, sweep_angle, fill_mode

Creates an arc-shaped object. The arc will be created within the rectangle described by the parameters.

It will start at the specified start_angle and sweep clockwise through the specified sweep_angle. The

angle values are in degrees.

The effect of the fill_mode parameter depends on the Gr.color style parameter:

 Style 0, fill_mode false: Only the arc is drawn.

 Style 0, fill_mode true: The arc is drawn with lines connecting each endpoint to the center of the

bounding rectangle. The resulting closed figure is not filled.

 Style non-0, fill_mode false: The endpoints of the arc are connected by a single straight line. The

resulting figure is filled.

 Style non-0, fill_mode true: The arc is drawn with lines connecting each endpoint to the center of

the bounding rectangle. The resulting closed figure is filled.

The <obj_nvar> returns the Object List object number for this arc. This object will not be visible until the

Gr.render command is called.

The Gr.modify parameters for Gr.arc are: "left", "top", "right", "bottom", "start_angle", "sweep_angle"

and "fill_mode". The value for "fill_mode" is either false (0) or true (not 0).

Gr.circle <obj_nvar>, x, y, radius

Creates a circle object. The circle will be created with the given radius around the designated center (x,y)

coordinates. The circle will or will not be filled depending upon the Gr.color style parameter. The

<obj_nvar> returns the Object List object number for this circle. This object will not be visible until the

Gr.render command is called.

The Gr.modify parameters for Gr.circle are "x", "y", and "radius".

Original Author Paul Laughton, 2011 Page 158 De Re BASIC!

Gr.set.pixels <obj_nvar>, pixels[{<start>,<length>}] {,x,y}

Inserts an array of pixel points into the Object List. The array (pixels[]) or array segment

(pixels[start,length]) contains pairs of x and y coordinates for each pixel. The pixels[] array or array

segment may be any size but must have an even number of elements.

If the optional x,y expression pair is present, the values will be added to each of the x and y coordinates

of the array. This provides the ability to move the pixel array around the screen. The default values for

the x,y pair is 0,0. Negative values for the x,y pair are valid.

Pixels will be drawn as 2x2 matrix pixels if AntiAlias is on and the stroke = 0. To draw single-pixel pixels,

set AntiAlias off and set the stroke = 0. AntiAlias in on by default.

The <obj_nvar> returns the Object List object number for the object. The pixels will not be visible until

the Gr.render command is called.

The Gr.modify parameters for this command are "x" and "y".

In addition to modify, the individual elements of the pixel array can be changed on the fly. For example:

Pixels[3] = 120

Pixels[4] = 200

will cause the second pixel to be located at x = 120, y = 200 at the next rendering.

Gr.poly <obj_nvar>, list_pointer {,x, y}

Creates an object that draws a closed polygon of any number of sides. The <obj_nvar> returns the

Object List object number for this polygon. This object will not be visible until the next Gr.render.

The list_pointer is an expression that points to a List data structure. The list contains x,y coordinate

pairs. The first coordinate pair defines the point at which the polygon drawing starts. Each subsequent

coordinate pair defines a line drawn from the previous coordinate pair to this coordinate pair. A final

line drawn from the last point back to the first closes the polygon.

If the optional x,y expression pair is present, the values will be added to each of the x and y coordinates

of the list. This provides the ability to move the polygon array around the screen. The default x,y pair is

0,0. Negative values for x and y are valid.

The polygon line width, line color, alpha and fill are determined by previous Gr.color and Gr.set.stroke

commands just like any other drawn object. These attributes are owned by the poly object, not by the

list. If you use the same list in different Gr.poly commands, the color, stroke, etc., may be different.

You can change the polygon (add, delete, or move points) by directly manipulating the list with List

commands. You can change to a different list of points using Gr.Modify with "list" as the tag parameter.

Changes are not visible until the Gr.render command is called.

Original Author Paul Laughton, 2011 Page 159 De Re BASIC!

When you create a polygon with Gr.poly or attach a new list with Gr.modify, the list must have an even

number of values and at least two coordinate pairs (four values). These rules are enforced with run-time

errors. The rules cannot be enforced when you modify the list with List commands. Instead, if you have

an odd number of coordinates, the last is ignored. If you have only one point, Gr.render draws nothing.

The Gr.modify parameters are "x", "y" and "list".

See the Sample Program file, f30_poly, for working examples of Gr.poly.

Groups

You can put graphical objects into groups. A group is a list of graphical objects. When you perform

certain operation on a group, the operation is performed on each object in the group.

You group graphical objects by creating a Group Object on the Display List. You use the group by putting

its object number in a graphics command where you would use any other graphical object number.

In this version of BASIC!, you can use a Group Object in these commands:

 Gr.move: moves all of the objects by the same x and y amounts

 Gr.hide: hides all of the objects

 Gr.show: shows (unhides) all of the objects

 Gr.show.toggle: any objects that are showing will be hidden, and any objects that are

hidden will be shown.

You use graphics commands to act on the objects in the group’s list. You use the List commands to act

on the list: add objects, count the objects, clear the list, and so on.

Try running this example. Watch as the top circle moves to the right, then the top two, and finally the

top three, as circles are added one-by-one to the list attached to the group.

GR.OPEN ,,,,,1 : GR.COLOR ,255,0,0,2

GR.CIRCLE c1,100,100,40 : GR.CIRCLE c2,100,200,40

GR.CIRCLE c3,100,300,40 : GR.CIRCLE c4,100,400,40

GR.RENDER : PAUSE 1000 % draw four red circles

GR.GROUP g, c1 % create a group with one circle

GR.GET.VALUE g, "list", gList % get the group’s list of objects

GR.MOVE g, 0, 50 % move whole group 0 up/down, 50 right

GR.RENDER : PAUSE 1000 % only one circle moves

LIST.ADD gList, c2 % add another circle to the group’s list

GR.MOVE g, 0, 50

GR.RENDER : PAUSE 1000 % two circles move

LIST.ADD gList, c2 % add another circle to the group’s list

GR.MOVE g, 0, 50 % three circles move

GR.RENDER : PAUSE 1000

Original Author Paul Laughton, 2011 Page 160 De Re BASIC!

GR.CLOSE : END

Gr.group <object_number_nvar>{, <obj_nexp>}...

Creates a group of graphical objects. All of the numeric expressions <obj_nexp> must evaluate to valid

graphical object numbers. The object numbers are put in a list and attached to the group.

The <object_number_nvar> returns the Object List object number for the group.

The Gr.modify parameter is "list".

Gr.group.list <object_number_nvar>, <list_ptr_nexp>

Creates a group from a list of graphical objects. The List is assumed to contain valid graphical object

numbers, but it is not checked. The list is simply attached to the group.

The list pointer parameter <list_ptr_nexp> is optional. If you provide an expression that evaluates to a

valid List pointer, the List that the pointer addresses supplies the graphical objects that are put in the

group. Otherwise, the group is empty. If you provide a numeric variable that does not already point to a

list, the variable is set to point to the group’s empty list.

The <object_number_nvar> returns the Object List object number for the group.

The Gr.modify parameter is "list".

Gr.group.getDL <object_number_nvar>

Creates a group from the current Display List. The Display List is copied to a new list that is attached to

the group.

The <object_number_nvar> returns the Object List object number for the group.

The Gr.modify parameter is "list".

Gr.group.newDL <object_number_nvar>

Replaces the existing Display List with a new list read from the specified group.

The <object_number_nvar> returns the Object List object number for the group.

The Gr.modify parameter is "list".

Hide and Show Commands

Gr.hide <object_number_nexp>

Hides the object with the specified Object Number. If the Object is a Group, all of the Graphical Objects

in the Group are hidden. This change will not be visible until the Gr.render command is called.

Original Author Paul Laughton, 2011 Page 161 De Re BASIC!

Gr.show <object_number_nexp>

Shows (unhides) the object with the specified Object Number. If the Object is a Group, all of the

Graphical Objects in the Group are shown. This change will not be visible until the Gr.render command

is called.

Gr.show.toggle <object_number_nexp>

Toggles visibility of the object with the specified Object Number. If it is hidden, it will be shown. If it is

shown, it will be hidden. If the Object is a Group, all of the Graphical Objects in the Group are toggled.

This change will not be visible until the Gr.render command is called.

Touch Query Commands

If the user touches the screen and then moves the finger without lifting the finger from the screen, the

motion can be tracked by repeatedly calling on the touch query commands. This will allow you to

program the dragging of graphical objects around the screen. The Sample Program, f23_breakout.bas,

illustrates this with the code that moves the paddle.

The OnGrTouch: label can be used optionally to interrupt your program when a new touch is detected.

The touch commands report on one- or two-finger touches on the screen. If the two fingers cross each

other on the x-axis then touch and touch2 will swap.

Gr.touch touched, x, y

Tests for a touch on the graphics screen. If the screen is being touched, Touched is returned as true (not

0) with the (x,y) coordinates of the touch. If the screen is not currently touched, Touched returns false

(0) with the (x,y) coordinates of the last previous touch. If the screen has never been touched, the x and

y variables are left unchanged. The command continues to return true as long as the screen remains

touched.

If you want to detect a single short tap, after detecting the touch, you should loop until touched is false.
DO

GR.TOUCH touched, x, y

UNTIL touched

! Touch detected, now wait for

! finger lifted

DO

GR.TOUCH touched, x, y

UNTIL !touched

The returned values are relative to the actual screen size. If you have scaled the screen then you need to

similarly scale the returned parameters. If the parameters that you used in Gr.scale were scale_x and

scale_y (Gr.scale scale_x, scale_y) then divide the returned x and y by those same values.

GR.TOUCH touched, x, y

Xscaled = x / scale_x

Yscaled = y / scale_y

Original Author Paul Laughton, 2011 Page 162 De Re BASIC!

Gr.bounded.touch touched, left, top, right, bottom

The Touched parameter will be returned true (not zero) if the user has touched the screen within the

rectangle defined by the left, top, right, bottom parameters. If the screen has not been touched or has

been touched outside of the bounding rectangle, the touched parameter will be return as false (zero).

The command will continue to return true as long as the screen remains touched and the touch is within

the bounding rectangle.

The bounding rectangle parameters are for the actual screen size. If you have scaled the screen then you

need to similarly scale the bounding rectangle parameters. If the parameters that you used in Gr.scale

were scale_x and scale_y (Gr.scale scale_x, scale_y) then divide left and right by scale_x and divide top

and bottom by scale_y.

Gr.touch2 touched, x, y

The same as Gr.touch except that it reports on second simultaneous touch of the screen.

Gr.bounded.touch2 touched, left, top, right, bottom

The same as Gr.bounded.touch except that it reports on second simultaneous touch of the screen.

OnGrTouch:

Interrupt label that traps any touch on the Graphics screen (see "Interrupt Labels"). BASIC! executes the

statements following the OnGrTouch: label until it reaches a Gr.onGrTouch.resume command.

To detect touches on the Output Console (not in Graphics mode), use OnConsoleTouch:.

Gr.onGrTouch.resume

Resumes execution at the point in the BASIC! program where the OnGrTouch: interrupt occurred.

Text Commands

Overview

Gr.text.draw is the only text command that creates a graphical object. The other text commands set

attributes of text yet to be drawn or report measurements of text.

Each command that sets a text attribute (the Gr.text.align, bold, size, skew, strike, and underline

commands, as well as Gr.text.setfont and typeface) has an optional "Paint pointer" parameter that may

be used to specify a Paint object to modify. Normally this parameter is omitted, and the command sets a

text attribute for all text objects drawn after the command is executed. For using the Paint pointer, see

"Paints Advanced Usage", above.

Gr.text.height returns information about how text would be drawn. It does not measure a drawn text

object, but uses information from the current Paint.

Gr.text.width and Gr.get.textbounds commands can return information about how text would be

drawn or how a text object was actually drawn. If used to measure the text of a string expression, they

Original Author Paul Laughton, 2011 Page 163 De Re BASIC!

use information from the current Paint. If used to measure the text of a text object that was already

drawn, they use information from the text object.

Gr.text.align {{<type_nexp>}{,<paint_nexp>}}

Align the text relative to the (x,y) coordinates given in the Gr.text.draw command.

type values: 1 = Left, 2 = Center, 3 = Right.

You may use the optional Paint pointer parameter <paint_nexp> to specify a Paint object to modify.

Normally this parameter is omitted. See Gr.color, Advanced usage for more information.

Gr.text.bold {{<lexp>}{,<paint_nexp>}}

Turns bold on or off on text objects drawn after this command is issued:
 If the value of the bold parameter <lexp> is false (0), text bold is turned off.

 If the parameter value is true (not zero), makes text appear bold.

 If the parameter is omitted, the bold setting is toggled.

If the color fill parameter is 0, only the outline of the bold text will be shown. If fill <>0, the text outline

will be filled.

This is a "fake bold", simulated by graphical techniques. It may not look the same as text drawn after

setting "Bold" style with Gr.text.setfont or Gr.text.typeface.

You may use the optional Paint pointer parameter <paint_nexp> to specify a Paint object to modify.

Normally this parameter is omitted. See Gr.color, Advanced usage for more information.

Gr.text.size {{<size_nexp>}{,<paint_nexp>}}

Specifies the size of the text in pixels. The size <nexp> sets the nominal height of the characters. This

height is large enough to include the top of characters with ascenders, like "h", and the bottom of

characters with descenders, like "y". Character width is scaled proportionately to the height.

You may use the optional Paint pointer parameter <paint_nexp> to specify a Paint object to modify.

Normally this parameter is omitted. See Gr.color, Advanced usage for more information.

Gr.text.skew {{<skew_nexp>}{,<paint_nexp>}}

Skews the text to give an italic effect. Negative values of <nexp> skew the bottom of the text left. This

makes the text lean forward. Positive values do the opposite. Traditional italics can be best imitated

with <nexp> = -0.25.

You may use the optional Paint pointer parameter <paint_nexp> to specify a Paint object to modify.

Normally this parameter is omitted. See Gr.color, Advanced usage for more information.

Gr.text.strike {{<lexp>}{,<paint_nexp>}}

Turns overstrike on or off on text objects drawn after this command is issued:
 If the value of the strike parameter <lexp> is false (0), text strike is turned off.

 If the parameter value is true (not zero), text will be drawn with a strike-through line.

Original Author Paul Laughton, 2011 Page 164 De Re BASIC!

 If the parameter is omitted, the bold setting is toggled.

 You may use the optional Paint pointer parameter <paint_nexp> to specify a Paint object to modify.

Normally this parameter is omitted. See Gr.color, Advanced usage for more information.

Gr.text.underline {{<lexp>}{,<paint_nexp>}}

Turns underlining on or off on text objects drawn after this command is issued:
 If the value of the underline parameter <lexp> is false (0), text underlining is turned off.

 If the parameter value is true (not zero), drawn text will be underlined.

 If the parameter is omitted, the underline setting is toggled.

 You may use the optional Paint pointer parameter <paint_nexp> to specify a Paint object to modify.

Normally this parameter is omitted. See Gr.color, Advanced usage for more information.

Gr.text.setfont {{<font_ptr_nexp>|<font_family_sexp>} {, <style_sexp>}

{,<paint_nexp>}}

Set the text font, specifying typeface and style. Both of these parameters are optional. This command is

similar to the older Gr.text.typeface, but it is more flexible.

If the font parameter is a numerical expression <font_ptr_nexp>, it must be a font pointer value

returned by the Font.load command. You cannot modify the style of a font once it is loaded, so the the

style parameter <style_sexp> is ignored.

If the font parameter is a string expression <font_family_sexp>, it must specify one of the font families

available on your Android device. If your device does not recognize the string, the font is set to the

system default font typeface. On most systems, the default is "sans serif".

The standard font families are "monospace", "serif", and "sans serif". Some more recent versions of

Android also support "sans-serif", "sans-serif-light", "sans-serif-condensed", and "sans-serif-thin". The

font family names are not case-sensitive: "Serif" or "SERIF" works as well as "serif".

If you omit the font parameter, the command sets the most recently loaded font (see Font.load). If you

have deleted fonts (see Font.delete), the command sets the most recently loaded font that has not been

deleted. If you have not loaded any fonts, or if you have cleared them (see Font.clear), the command

sets the default font family.

If you specify a font family, you can use the style parameter <style_sexp> to change the font’s

appearance. The parameter value must be one of the style strings shown in the table below. You may

use either the full style name or an abbreviation as shown. The parameter is not case-senstive: "BOLD",

"bold", "Bold", and "bOlD" are all the same. If you use any other string, or if you omit the style

parameter, the style is set to "NORMAL".

Original Author Paul Laughton, 2011 Page 165 De Re BASIC!

Style Name Abbreviation

"NORMAL" "N"

"BOLD" "B"

"ITALIC" "I"

"BOLD_ITALIC" "BI"

Notes: The "monospace" font family always displays as "normal", regardless of the style parameter.

Some devices do not support all of the styles.

You may use the optional Paint pointer parameter <paint_nexp> to specify a Paint object to modify.

Normally this parameter is omitted. See Gr.color, Advanced usage for more information.

Gr.text.typeface {{<font_nexp>} {, <style_nexp>} {,<paint_nexp>}}

Set the text typeface and style. Both of these parameters are optional. The default value if you omit

either parameter is 1. All valid values and their meanings are shown in this table:

The values for <font_nexp> are: The values for <style_nexp> are:

1 Default font 1 Normal (not bold or italic)

2 Monospace font 2 Bold

3 Sans-serif font 3 Italic

4 Serif font 4 Bold and italic

This command is similar to the newer Gr.text.setfont, except that it is limited to the four typefaces

listed in the table. It cannot specify fonts loaded by the Font.load command.

Notes: The "Monospace" font (font 2) always displays as "Normal" (style 1), regardless of the style

parameter. Some devices do not support all of the styles.

You may use the optional Paint pointer parameter <paint_nexp> to specify a Paint object to modify.

Normally this parameter is omitted. See Gr.color, Advanced usage for more information.

Gr.text.height {<height_nvar>} {, <up_nvar>} {, <down_nvar>}

Returns height information for the current font and text size. All of the parameters are optional; use

commas to indicate omitted parameters (see Optional Parameters).

If the height variable <height_nvar> is present, it is set to the height in pixels of the space that will be

used to print most text in most languages. This is the value you set with Gr.text.size. In typeface

terminology, it is the "acsent" plus the "descent". The space contains the ascenders of letters like "h"

and the descenders of letters like "y".

Some letters, such as the Polish letter "Ż", may not fit in this space. The position of a line high enough to

contain all possible characters is returned in the up variable <up_nvar>, if it is present.

If the down variable <down_nvar> is present, it is set to the "descent" value. This position is low enough

to contain the lowest part of all possible characters, such as the tail of a "y".

Original Author Paul Laughton, 2011 Page 166 De Re BASIC!

Gr.text.draw positions text so the the body of the characters sit on a line called the baseline. The down

and up values are reported as offsets from this baseline. The up value is negative, because it defines a

position above the baseline. The down value is positive, because its position is below the baseline. The

height value is not an offset, so it is always positive. down - up is always larger than height.

Sometimes you want to know the real screen positions of the top and bottom of the area where your

text will be drawn, independent of the actual text you will draw there. The bottom of this area is the y

coordinate of Gr.text.draw plus the down value of Gr.text.height. For most applications, the top of the

text area is the bottom position minus the height value of Gr.text.height, so y + down - height. For

some applications (such as a Polish text field), you may need the extra height you get with y + up.

GR.TEXT.SIZE 40

GR.TEXT.HEIGHT ht, up, dn % ht is 40

GR.TEXT.DRAW t, x, y, "Hello, World!"

txtBottom = y + dn

txtTop = txtBottom - ht % good for most applications

txtTop = y + up % high enough for all possible text (up is negative)

Gr.text.width <nvar>, <exp>

Returns the pixel width of a string (from <exp>) in the variable <nvar>.

 If the parameter <exp> is a string expression, the return value is the width of the string as if it were

displayed on the screen using the latest text attribute settings: the typeface, size, and style as set by

the Gr.text.* commands (or default values if you did not set them).

 If the parameter <exp> is a numeric expression, its value must be a text object number from

Gr.text.draw, or you will get a run-time error. The return value is the width of the text of the object

as it would be displayed on the screen by Gr.render.

Advanced usage: To calculate dimensions, both Gr.text.width and Gr.get.textbounds (below) use a text

string and a set of text attributes. The text attributes are kept in a Paint object. The source of the string

and the Paint depends on the type of the <exp> parameter:

If <exp> is a value of <exp> is source of text string is Source of text attributes is

string
expression

the string to measure value of <exp> Current Paint (most recent
Gr.text.* settings)

numeric
expression

a text object number
from Gr.text.draw

string from Gr.text.draw
(kept in text object)

Paint attached to the text object
(see Note, below)

Note: Gr.text.draw attaches a Paint to the text object using the text attributes that are current at that

time. This is the Paint Gr.render uses to display the text on the screen. If you modify this Paint,

the changes are reflected in values returned by Gr.text.width and Gr.get.textbounds, and also

shown on the screen with the next Gr.render.

Gr.get.textbounds <exp>, left, top, right, bottom

Gets the boundary rectangle of a string as it would be drawn on the screen. The returned coordinate

values give you the dimensions of the bounding rectangle but not its location.

Original Author Paul Laughton, 2011 Page 167 De Re BASIC!

The parameter <exp> follows the same rules as Gr.text.width (see above) to get a text string and the

text attributes (typeface, size, and style) used to measure the string.

The coordinates of the rectangle are reported as if Gr.text.draw positioned your text at 0,0. You get the

actual boundaries of a text object by adding the textbounds offsets to the actual x,y coordinates of the

Gr.text.draw command.

In typeface terminology, the coordinate values are offsets from the beginning of the baseline of the text

(see Gr.text.draw and Gr.text.height for more explanation of the lines that define where text is drawn).

This is why the value returned for "top" is always a negative number.

If this is confusing, try running this example:

GR.OPEN ,,,,,-1

GR.COLOR 255,255,0,0,0

GR.TEXT.SIZE 40

GR.TEXT.ALIGN 1

s$ = "This is only a test"

GR.GET.TEXTBOUNDS s$,l,t,r,b

PRINT l,t,r,b

x=10 : y=50

GR.RECT rct,l+x,t+y,r+x,b+y

GR.TEXT.DRAW txt,x,y,s$

GR.RENDER

PAUSE 5000

Gr.text.draw <object_number_nvar>, <x_nexp>, <y_nexp>, <text_object_sexp>

Creates and inserts a text object (<text_object_sexp>) into the Display List. The text object will use the

latest color and text preparatory commands. The <object_number_nvar> returns the Display List object

number for this text. This object will not be visible until the Gr.render command is called.

Gr.text.draw positions the text so the the bodies of the characters sit on a line called the baseline. The

tails of letters like "y" hang below the baseline.The y value <y_nexp> sets the location of this baseline.

The Gr.text.height command tells you the locations of the various lines used to draw text. The

Gr.text.width command tells you width of the space in which a specific string will be drawn. The

Gr.get.textbounds command tells you the locations of the left-, top-, right-, and bottom-most pixels

actually drawn for a specific text string.

The Gr.modify parameters for Gr.text.draw are "x", "y", and "text". The value for "text" is a string

representing the new text.

Original Author Paul Laughton, 2011 Page 168 De Re BASIC!

Bitmap Commands

Overview

When a bitmap is created, it is added to a list of bitmaps. Commands that create bitmaps return a

pointer to the bitmap. The pointer is an index into the bitmap list. Your program works with the bitmap

through the bitmap pointer.

If you want to draw the bitmap on the screen, you must add a graphical object to the Object List. The

Gr.bitmap.draw command creates a graphical object that holds a pointer to the bitmap. Do not confuse

the bitmap with the graphical object. You cannot use the Object Number to access the bitmap, and you

cannot use the bitmap pointer to modify the graphical object.

Android devices limit the amount of memory available to your program. Bitmaps may use large blocks of

memory, and so may exceed the application memory limit. If a command that creates a bitmap exceeds

the limit, the bitmap is not created, and the command returns -1, an invalid bitmap pointer. Your

program should test the bitmap pointer to find out if the bitmap was created. If the bitmap pointer is -1,

you can call the GETERROR$() function to get information about the error.

If a command exceeds the memory limit, but BASIC! does not catch the out-of-memory condition, your

program terminates with an error message displayed on the Console screen. If you return the Editor, a

line will be highlighted near the one that exceeded the memory limit. It may not be exactly the right line.

Bitmaps use four bytes of memory for each pixel. The amount of memory used depends only on the

width and height of the bitmap. The bitmap is not compressed. When you load a bitmap from a file, the

file is usually in a compressed format, so the bitmap will usually be larger than the file.

Gr.bitmap.create <bitmap_ptr_nvar>, width, height

Creates an empty bitmap of the specified width and height. The specified width and height may be

greater than the size of the screen, if needed.

Returns a pointer to the created bitmap in the <bitmap_ptr_nvar> variable for use with the other

Gr.bitmap commands. If there is not enough memory available to create the bitmap, the returned

bitmap pointer is -1. Call GETERROR$() for information about the failure.

Gr.bitmap.load <bitmap_ptr_nvar>, <file_name_sexp>

Creates a bitmap from the file specified in the file_name string expression. Returns a pointer to the

created bitmap for use with other Gr.bitmap commands. If no bitmap is created, the returned bitmap

pointer is -1. Call GETERROR$() for information about the failure. Some of the possible causes are:

 The file or resource does not exist.

 There is not enough memory available to create the bitmap.

Bitmap image files are assumed to be located in the "<pref base drive>/rfo-basic/data/" directory.

Note: You may include path fields in the file name. For example, "../../Cougar.jpg" would cause BASIC! to

look for Cougar.jpg in the top level directory of the base drive, usually the SD card. "images/Kitty.png"

Original Author Paul Laughton, 2011 Page 169 De Re BASIC!

would cause BASIC! to look in the images(d) sub-directory of the "/sdcard/rfo-basic/data/"

("/sdcard/rfo-basic/data/images/Kitty.png").

Note: Bitmaps loaded with this command cannot be changed with the Gr.bitmap.drawinto command.

To draw into an image loaded from a file, first create an empty bitmap then draw the loaded bitmap into

the empty bitmap.

Gr.bitmap.size <bitmap_ptr_nexp>, width, height

Return the pixel width and height of the bitmap pointed to by <bitmap_ptr_nexp> into the width and

height variables.

Gr.bitmap.scale <new_bitmap_ptr_nvar>, <bitmap_ptr_nexp>, width, height {,

<smoothing_lexp>}

Scales a previously loaded bitmap (<bitmap_ptr_nexp>) to the specified width and height and creates a

new bitmap <new_bitmap_ptr_nvar>. The old bitmap still exists; it is not deleted. If there is not enough

memory available to create the new bitmap, the returned bitmap pointer is -1. Call GETERROR$() for

information about the failure.

Negative values for width and height will cause the image to be flipped left to right or upside down.

Neither the width value nor the height value may be zero.

Use the optional smoothing logical expression (<smoothing_lexp>) to request that the scaled image not

be smoothed. If the expression is false (zero) then the image will not be smoothed. If the optional

parameter is true (not zero) or not specified then the image will be smoothed.

Gr.bitmap.delete <bitmap_ptr_nexp>

Deletes an existing bitmap. The bitmap's memory is returned to the system.

This does not destroy any graphical object that points to the bitmap. If you do not Gr.hide such objects,

or remove them from the Display List, you will get a run-time error from the next Gr.render command.

Gr.bitmap.crop <new_bitmap_ptr_nvar>, <source_bitmap_ptr_nexp>, <x_nexp>,

<y_nexp>, <width_nexp>, <height_nexp>

Creates a cropped copy of an existing source bitmap specified by <source_bitmap_ptr_nexp>. The

source bitmap is unaffected; a rectangular section is copied into a new bitmap. A pointer to the new

bitmap is returned in <new_bitmap_nvar>. If there is not enough memory available to create the new

bitmap, the returned bitmap pointer is -1. Call GETERROR$() for information about the failure.

The <x_nexp>, <y_nexp> pair specifies the point within the source bitmap that the crop is to start at.

The <width_nexp>, <height_nexp> pair defines the size of the rectangular region to crop.

Original Author Paul Laughton, 2011 Page 170 De Re BASIC!

Gr.bitmap.save <bitmap_ptr_nvar>, <filename_sexp>{, <quality_nexp>}

Saves the specified bitmap to a file. The default path is "<pref base drive>/rfo-basic/data/".

The file will be saved as a JPEG file if the filename ends in ".jpg".

The file will be saved as a PNG file if the filename ends in anything else (including ".png").

Gr.bitmap.draw <object_ptr_nvar>, <bitmap_ptr_nexp>, x , y

Creates a graphical object that contains a bitmap and inserts the object into the Object List. The bitmap

is specified by the bitmap pointer <bitmap_ptr_nexp>. The bitmap will be drawn with its upper left

corner at the provided (x,y) coordinates. The command returns the Object List object number of the

graphical object in the <object_ptr_nvar> variable. This object will not be visible until the Gr.render

command is called.

The alpha value of the latest Gr.color will determine the transparency of the bitmap.

The Gr.modify parameters for Gr.bitmap.draw are "bitmap", "x" and "y".

Gr.get.bmpixel <bitmap_ptr_nvar>, x, y, alpha, red, green, blue

Return the color data for the pixel of the specified bitmap at the specified x, y coordinate. The x and y

values must not exceed the length or width of the bitmap.

Gr.bitmap.fill <bitmap_ptr_nexp>, <x_nexp>, <y_nexp>

Change all of the points in an area of a bitmap to the current drawing color. The bitmap pointer

parameter <bitmap_ptr_nexp> must specify an existing bitmap. The x and y parameters <x_nexp> and

<y_nexp> must specify a point (x,y) in the bitmap. The area to color is a set of connected pixels all the

same color. The area may be any shape, and the point (x,y) may be any point in the area.

This command reads actual bitmap pixel colors, so it is affected by the antialiasing setting. If antialiasing

is on, the pixels at the edge of the colored area may not be re-colored correctly.

Gr.bitmap.drawinto.start <bitmap_ptr_nexp>

Put BASIC! into the draw-into-bitmap mode.

Original Author Paul Laughton, 2011 Page 171 De Re BASIC!

All draw commands issued while in this mode draw directly into the bitmap. The objects drawn in this

mode are not placed into the display list. The object number returned by the draw commands while in

this mode is invalid and should not be used for any purpose including Gr.modify.

Note: Bitmaps loaded with the Gr.bitmap.load command cannot be changed with Gr.bitmap.drawinto.

To draw into an image loaded from a file, first create an empty bitmap then draw the loaded bitmap into

the empty bitmap.

Gr.bitmap.drawinto.end

End the draw-into-bitmap mode.Subsequent draw commands will place the objects into the display list

for rendering on the screen. If you wish to display the drawn-into bitmap on the screen, issue a

Bitmap.draw command for that bitmap.

Paint Commands

Gr.paint.copy {{<src_nexp>}{, <dst_nexp>}}

Copy the Paint object at the source pointer <src_nexp> to the destination pointer <dst_next>.

Both parameters are optional. If you wish to specify a destination, you must include a comma, whether

or not you specify a source. If either parameter is omitted, or if its value is -1, the current Paint is used.

The Paint already at the destination pointer is replaced. If the destination is the current Paint, a newly-

created paint becomes the current Paint.

This command has four forms, depending on which parameters are present:
GR.PAINT.COPY % Duplicate the current Paint

GR.PAINT.COPY m % Copy Paint m to the current Paint

GR.PAINT.COPY , n % Overwrite Paint n so it is the same as the current Paint

GR.PAINT.COPY m, n % Overwrite Paint n so it is the same as Paint m

Gr.paint.get <object_ptr_nvar>

Gets a pointer (<object_ptr_nvar>) to the last created Paint object. For information about Paint objects,

see the section Graphics Introduction Paints, above.

This pointer can be used to change the Paint object associated with a draw object by means of the

Gr.modify command. The Gr.modify parameter is "paint".

If you want to modify any of the paint characteristics of an object then you will need to create a current

Paint object with those parameters changed. For example:

GR.COLOR 255,0,255,0,0

GR.TEXT.SIZE 20

GR.TEXT.ALIGN 2

GR.PAINT.GET the_paint

GR.MODIFY shot, "paint", the_paint

changes the current text size and alignment as well as the color.

Original Author Paul Laughton, 2011 Page 172 De Re BASIC!

Gr.paint.reset {<nexp>}

Force the specified Paint to default settings:
Color opaque black (255, 0, 0, 0)

Antialias ON

Style FILL (0)

Minimum stroke width (0.0)

The parameter is optional. If the parameter is omitted or set to -1, a new current Paint is created with

default settings.

Rotate Commands

These commands put graphics objects on the Display List like the GR drawing commands, but they don’t

draw anything. Instead they work as markers in the list. When the renderer sees the start marker, it

temporarily rotates its coordinate system. The end marker tells the renderer to restore the coordinate

system to normal.

The effect is to rotate or move any objects drawn after Gr.rotate.start and before Gr.rotate.end.

As with any graphics object, the rotate parameters may be changed with Gr.modify. At the next

Gr.render, the rotated objects will be redrawn in their new positions.

Gr.rotate.start angle, x, y{,<obj_nvar>}

Any objects drawn between the Gr.rotate.start and Gr.rotate.end will be rotated at the specified angle,

in degrees, around the specified (x,y) point. If the angle is positive, objects are rotated clockwise.

The optional <obj_nvar> will contain the Object list object number of the Gr.rotate.start object. If you

are going to use rotated objects in the array for Gr.NewDl then you will need to include the

Gr.rotate.start and Gr.rotate.end objects.

The Gr.modify parameters for Gr.rotate.start are "angle", "x" and "y".

Gr.rotate.start must be eventually followed by Gr.rotate.end or you will not get the expected results.

Gr.rotate.end {<obj_nvar>}

Ends the rotated drawing of objects. Objects created after this command will not be rotated.

The optional <obj_nvar> will contain the Object list object number of the Gr.rotate.end object. If you

are going to use rotated objects in the array for Gr.NewDl then you will need to include the

Gr.rotate.start and Gr.rotate.end objects.

Camera Commands

There are three ways to use the camera from BASIC!:

1) The device’s built in Camera User Interface can be used to capture an image. This method

provides access to all the image-capture features that you get when you execute the device’s

Original Author Paul Laughton, 2011 Page 173 De Re BASIC!

Camera application. The difference is the image bitmap is returned to BASIC! for manipulation

by BASIC! The Gr.camera.shoot command implements this mode.

2) A picture can be taken automatically when the command is executed. This mode allows for

untended, time-sequenced image capture. The command provides for the setting the flash to

on, off and auto. The Gr.camera.autoshoot command implements this mode.

3) The third mode is the Gr.camera.manualshoot command which is much like the autoshoot

mode. The difference is that a live preview is provided and the image is not captured until the

screen is touched.

All pictures are taken at full camera resolution and stored with 100% jpg quality as "<pref base

drive>/rfo-basic/data/image.png".

All of these commands also return pointers to bitmaps. The bitmaps produced are scaled down by a

factor of 4. You may end up generating several other bitmaps from these returned bitmaps. For

example, you many need to scale the returned bitmap to get it to fit onto your screen. Any bitmaps that

you are not going to draw and render should be deleted using Gr.bitmap.delete to avoid out-of-memory

situations.

The Sample Program, f33_camera.bas, demonstrates all the modes of camera operations. It also

provides examples of scaling the returned image to fit the screen, writing text on the image and deleting

obsolete bitmaps.

The Sample Program, f34_remote_camera.bas, demonstrates remote image capture using two different

Android devices.

Gr.camera.select 1|2

Selects the Back (1) or Front(2) camera in devices with two cameras. The default camera is the back

(opposite the screen) camera.

If only one exists camera exists, then the default will be that camera. For example, if the device (such as

the Nexus 7) only has a Front Camera then it will be the default camera. If the device does not have any

installed camera apps, then there will be a run-time error message, "This device does not have a

camera." In addition, a run-time error message will be shown if the device does not have the type of

camera (front or back) selected.

Gr.camera.shoot <bm_ptr_nvar>

The command calls the device’s built in camera user interface to take a picture. The image is returned to

BASIC! as a bitmap pointed to by the bm_ptr numeric variable. If the camera interface does not, for

some reason, take a picture, bm_ptr will be returned with a zero value.

Many of the device camera interfaces will also store the captured images somewhere else in memory

with a date coded filename. These images can be found with the gallery application. BASIC! is not able

to prevent these extraneous files from being created.

Original Author Paul Laughton, 2011 Page 174 De Re BASIC!

Note: Some devices like the Nexus 7 do not come with a built in camera interface. If you have installed

an aftermarket camera application then it will be called when executing this command. You can take

pictures with the Nexus 7 (or similar devices) using the other commands even if you do not have camera

application installed. If the device does not have any installed camera apps, then there will be a run-time

error message, "This device does not have a camera."

Gr.camera.autoshoot <bm_ptr_nvar>{, <flash_ mode_nexp> {, focus_mode_nexp} }

An image is captured as soon as the command is executed. No user interaction is required. This

command can be used for untended, time-sequence image captures.

The optional flash_mode numeric expression specifies the flash operation:

0 Auto Flash

1 Flash On

2 Flash Off

3 Torch

4 Red-eye

The default, if no parameter is given, is Auto Flash.

The optional focus_mode numeric expression specifies the camera focus:

0 Auto Focus

1 Fixed Focus

2 Focus at Infinity

3 Macro Focus (close-up)

The default, if no parameter is given, is Auto Focus.

If you want to specify a focus mode, you must also specify a flash mode.

The command also stores the captured image into the file, "<pref base drive>/rfo-

basic/data/image.png".

Gr.camera.manualShoot <bm_ptr_nvar>{, <flash_ mode_nexp> {, focus_mode_nexp} }

This command is much like Gr.camera.autoshoot except that a live preview is shown on the screen. The

image will not be captured until the user taps the screen.

Other Graphics Commands

Gr.screen.to_bitmap <bm_ptr_nvar>

The current contents of the screen will be placed into a bitmap. The pointer to the bitmap will be

returned in the bm_ptr variable. If there is not enough memory available to create the bitmap, the

returned bitmap pointer is -1. Call GETERROR$() for information about the failure.

Please note the idiosyncratic underscore in the command.

Original Author Paul Laughton, 2011 Page 175 De Re BASIC!

Gr.get.pixel x, y, alpha, red, green, blue

Returns the color data for the screen pixel at the specified x, y coordinate. The x and y values must not

exceed the width and height of the screen and must not be less than zero.

To get a pixel from the screen, BASIC! must first create a bitmap from the screen. If there is not enough

memory available to create the bitmap, you will get an "out-of-memory" run-time error.

Gr.save <filename_sexp> {,<quality_nexp>}

Saves the current screen to a file. The default path is "<pref base drive>/rfo-basic/data/".

The file will be saved as a JPEG file if the filename ends in ".jpg".

The file will be saved as a PNG file if the filename ends in anything else (including ".png").

The optional <quality_nexp> is used to specify the quality of a saved JPEG file. The value may range from

0 (bad) to 100 (very good). The default value is 50. The quality parameter has no effect on PNG files

which are always saved at the highest quality level.

Note: The size of the JPEG file depends on the quality. Lower quality values produce smaller files.

Gr.get.type <object_ptr_nexp>, <type_svar>

Get the type of the specified display list object. The type is a string that matches the name of the

command that created the object: "point", "circle", "rect", etc. For a complete list of types, see the table

in Gr.Modify.

If the <object_ptr_nexp> parameter does not specify a valid display list object, the returned type is the

empty string, "". You can call the GETERROR$() function to get information about the error.

Gr.get.params <object_ptr_nexp>, <param_array$[]>

Get the modifiable parameters of the specified display list object. The parameter strings are returned in

the <param_array$[]> in no particular order. The array is specified without an index. If the array exists, it

is overwritten. Otherwise a new array is created. The result is always a one-dimensional array.

For a complete list of parameters, see the table in Gr.Modify.

Gr.get.position <object_ptr_nexp>, x, y

Get the current x,y position of the specified display list object. If the object was specified with rectangle

parameters (left, top, right, bottom) then left is returned in x and top is returned in y. For Line objects,

the x1 and y1 parameters are returned.

Gr.move <object_ptr_nexp> {{, dx}{, dy}}

Moves the graphics object by the amounts dx and dy. If the object is a group, all of the graphical objects

in the group are moved. The dx and dy parameters are optional. If omitted they default to 0.

Original Author Paul Laughton, 2011 Page 176 De Re BASIC!

Gr.get.value <object_ptr_nexp> {, <tag_sexp>, <value_nvar | value_svar>}...

The value of the parameter named <tag_sexp> ("left", "radius", etc.) in the Display List object

<object_ptr_nvar> is returned in the variable <value_nvar> or <value_svar>. This command can return

values from only one object at a time, but you may list as many tag/variable pairs as you want.

Most parameters are numeric. Only the Gr.text.draw "text" parameter is returned in a string var. The

parameters for each object are given with descriptions of the commands in this manual. For a complete

list of parameters, see the table in Gr.Modify.

Gr.modify <object_ptr_nexp> {, <tag_sexp>, <value_nexp | value_sexp>}...

The value of the parameter named <tag_sexp> in the Display List object <object_ptr_nvar> is changed to

the value of the expression <value_nexp> or <value_sexp>. This command can change only one object at

a time, but you may list as many tag/value pairs as you want.

With this command, you can change any of the parameters of any object in the Display List. The

parameters you can change are given with the descriptions of the commands in this manual. In addition

there are two general purpose parameters, "paint" and "alpha" (see below for details).You must provide

parameter names that are valid for the specified object.

The results of Gr.modify commands will not be observed until a Gr.render command executes.

Original Author Paul Laughton, 2011 Page 177 De Re BASIC!

 TYPE POSITION 1
(numeric)

POSITION 2
(numeric)

ANGLE/RADIUS
(numeric)

UNIQUE
(various)

PAINT
(list ptr)

ALPHA
(num)

SH
A

P
ES

 a
n

d
 O

B
JE

C
TS

arc left top right bottom start_angle

sweep_angle
fill_mode paint alpha

bitmap x y bitmap paint alpha

circle x y radius paint alpha

line x1 y1 x2 y2 paint alpha

oval left top right bottom paint alpha

pixels x y paint alpha

point x y paint alpha

poly x y list paint alpha

rect left top right bottom paint alpha

text x y text paint alpha

MODI-
FIERS

clip left top right bottom RO paint alpha

group list paint alpha

rotate x y angle paint alpha

TABLE NOTES:

 The TYPE column shows the string returned by Gr.get.type for each graphical object type.

 Gr.get.position returns the values in the POSITION 1 columns.

 All table entries are Gr.modify tags (strings). Values of all the tags are numeric except for "text".

 The values of tags in the UNIQUE column are either strings ("text") or numbers with special

interpretations. "fill_mode" is a logical value. "list" is a pointer to a list of point coordinates. "RO" is

a Region Operator as explained in Gr.clip.

 "alpha" is an integer value from 0 to 256, with 256 interpreted specially. See General Purpose

Parameters, below.

 You can modify the Gr.set.pixels point-coordinates array directly. There is no Gr.modify tag.

For example, suppose a bitmap object was created with Gr.bitmap.draw BM_ptr, galaxy_ptr, 400, 120.

Executing gr.modify BM_ptr, "x", 420 would move the bitmap from x =400 to x = 420.

Executing gr.modify BM_ptr, "y", 200 would move the bitmap from y = 120 to y = 200.

Executing gr.modify BM_ptr, "x", 420, "y", 200 would change both x and y at the same time.

Executing gr.modify BM_ptr, "bitmap", Saturn_ptr would change the bitmap of an image of a

(preloaded) Galaxy to the image of a (preloaded) Saturn.

General Purpose Parameters

When you create a graphical object, all the graphics settings (color, stroke, text settings, and so forth)

are captured in a Paint object. You can use the "paint" parameter to replace the Paint object, changing

any graphics setting you want to. See the Gr.paint.get command description (below) for more details.

Normally, graphical objects get their alpha channel value (transparency) from the latest Gr.color

command. You can change the "alpha" parameter to any value from 0 to 255. Setting alpha to 256 tells

BASIC! to use the alpha from the latest color value.

Original Author Paul Laughton, 2011 Page 178 De Re BASIC!

For example, you can make an object slowly appear and disappear, just by changing its alpha with

Gr.modify.

Do

For a = 1 to 255 step 10

gr.modify object,"alpha",a

gr.render

pause 250

next a

For a = 255 to 1 step -10

gr.modify object,"alpha",a

gr.render

pause 250

next a

until 0

GR_COLLISION(<object_1_nexp>, <object_2_nexp>)

GR_COLLISION() is a function, not a command. The variables <object_1_nvar> and <object_2_nvar> are

the object pointers returned when the objects were created.

If the boundary boxes of the two objects overlap then the function will return true (not zero). If they do

not overlap then the function will return false (zero).

Objects that may be tested for collision are: rectangle, bitmap, circle, arc, oval, and text. In the case of a

circle, an arc, an oval, or text, the object’s rectangular boundary box is used for collision testing, not the

actual drawn object.

Gr.clip <object_ptr_nexp>, <left_nexp>, <top_nexp>, <right_nexp>, <bottom_nexp>{,

<RO_nexp>}

Objects that are drawn after this command is issued will be drawn only within the bounds (clipped) of

the clip rectangle specified by the "left, top, right, bottom" numeric expressions.

The final parameter is the Region Operator, <RO_nexp>. The Region Operator prescribes how this clip

will interact with everything else you are drawing on the screen or bitmap. If you issue more than one

Gr.clip command, the RO prescribes the interaction between the current Gr.clip rectangle and the

previous one. The RO values are:

0 Intersect

1 Difference

2 Replace

3 Reverse Difference

4 Union

5 XOR

The Region Operator parameter is optional. If it is omitted, the default action is Intersect.

Original Author Paul Laughton, 2011 Page 179 De Re BASIC!

Examples:

 Original Clip 1 Clip 2

Clip 2 applied to Clip 1 with RO parameter on Clip 2

 0 = Intersect 1 = Difference 2 = Replace

 3 = Reverse Difference 4 = Union 5 = XOR

Gr.clip is a display list object. It can be modified with Gr.modify. The modify parameters are "left",

"top", "right", "bottom", and "RO".

The Gr.show and Gr.hide commands can be used with the Gr.clip object.

Gr.newDL <dl_array[{<start>,<length>}]>

Replaces the existing display list with a new display list read from a numeric array (dl_array[]) or array

segment (dl_array[start,length]) of object numbers. Zero values in the array will be treated as null

objects in the display list. Null objects will not be drawn nor will they cause run-time errors.

See the Display List subtopic in this chapter for a complete explanation.

See the Sample Program file, f24_newdl, for a working example of this command.

Gr.getDL <dl_array[]> {, <keep_all_objects_lexp> }

Writes the current Display List into the numeric array <dl_array[]>. The array is specified without an

index. If the array exists, it is overwritten. Otherwise a new array is created. The result is always a one-

dimensional array. If the Display List is empty, the array will have one entry that does not display

anything.

Original Author Paul Laughton, 2011 Page 180 De Re BASIC!

By default, objects hidden with Gr.hide are not included in the returned array. To get all objects,

including hidden objects, set the optional keep_all_objects flag to true (any non-zero value).

Audio Interface

Introduction

The Audio Interface

BASIC! uses the Android Media Player interface for playing music files. This interface is not the most

stable part of Android. It sometimes gets confused about what it is doing. This can lead to random

"Forced Close" events. While these events are rare, they do occur.

Audio File Types

The Music Player is supposed to be able to play WAV, AAC, MP3, WMA, AMR, OGG and MIDI files. I have

tried MP3 and WAV files. Your mileage may vary on these other file types.

Commands

Audio files must be loaded into the Audio File Table (AFT) before they can be played. Each audio file in

the AFT has a unique index which is returned by the audio.load command.

Audio.load <aft_nvar>, <filename_sexp>

Loads a music file into the Audio File Table. The AFT index is returned in <aft_nvar>. If the file can’t be

loaded, the <aft_nvar> is set to 0. Your program should test the AFT index to find out if the file was

loaded. If the bitmap pointer is 0, you can call the GETERROR$() function to get information about the

error. If you use index 0 in another Audio command you will get a run-time error.

The file must be in the "<pref base drive>/ref-basic/data/" directories or one of its subdirectories.

You can reach outside the "<pref base drive>/ref-basic/data/" by using path fields in the filename. For

example, "../../Music/Blue Danube Waltz.mp3" would access "<pref base drive>/Music/Blue Danube

Waltz.mp3".

Audio.play <aft_nexp>

Selects the file from the Audio File Table pointed to by <aft_nexp> and begins to play it. There must not

be an audio file already playing when this command is executed. If there is a file playing, execute

audio.stop first.

The music stops playing when the program stops running. To simply start a music file playing and keep it

playing, keep the program running. This infinite loop will accomplish that:

Audio.load ptr, "my_music.mp3"

Audio.play ptr

Do

Pause 5000

Until 0

Original Author Paul Laughton, 2011 Page 181 De Re BASIC!

Audio.stop

Audio.stop terminates the currently-playing music file. The command will ignored is no file is playing. It

is best to precede each audio.play command with an audio.stop command.

Audio.pause

Pause is like stop except that the next audio.play for this file will resume the play at the point where the

play was paused.

Audio.loop

When the currently playing file reaches the end of file, the file will restart playing from the beginning of

the file. There must be a currently playing file when this command is executed.

Audio.volume <left_nexp>, <right_nexp>

Changes the volume of the left and right stereo channels. There must be a currently playing file when

this command is executed.

The values should range between 0.0 (lowest) to 1.0 (highest). The human ear perceives the level of

sound changes on a logarithmic scale. The ear perceives a 10db change as twice as loud. A 20db change

would be four times as loud.

A 1 db change would be about 0.89. One way to implement a volume control would be set up a volume

table with 1db level changes. The following code creates a 16 step table.

dim volume[16]

x =1

volume [1] = x

for i = 2 to 16

x = x * 0.89

volume [i] = x

next i

Your code can select volume values from the table for use in the audio.volume command. The loudest

volume would be volume[1].

Audio.position.current <nvar>

The current position in milliseconds of the currently playing file will be returned in <nvar>.

Audio.position.seek <nexp>

Moves the playing position of the currently playing file to <nexp> expressed in milliseconds.

Audio.length <length_nvar>, <aft_nexp>

Returns the total length of the file in the Audio File Table pointed to by <aft_nexp>. The length in

milliseconds will be returned in <length_nvar>.

Original Author Paul Laughton, 2011 Page 182 De Re BASIC!

Audio.release <aft_nexp>

Releases the resources used by the file in the Audio File Table pointed to by <aft_nexp>. The file must

not be currently playing. The specified file will no longer be able to be played.

Audio.isdone <lvar>

If the current playing file is still playing then <lvar> will be set to zero otherwise it will be set to one. This

can be used to determine when to start playing the next file in a play list.

Audio.play f[x]

Do

Audio.isdone isdone

Pause 1000

Until isdone

Audio.record.start <fn_svar>

Start audio recording using the microphone as the audio source. The recording will be saved to the

specified file. The file must have the extension .3GP. Recording will continue until the audio.record.stop

command is issued.

Audio.record.stop

Stops the previously started audio recording.

SoundPool

Introduction

A SoundPool is a collection of short sound bites that are preloaded and ready for instantaneous play.

SoundPool sound bites can be played while other sounds are playing, either while other sound bites are

playing or over a currently playing sound file being played my means of Audio.play. In a game, the

Audio.play file would be the background music while the SoundPool sound bites would be the game

sounds (Bang, Pow, Screech, etc).

A SoundPool is opened using the SoundPool.open command. After the SoundPool is opened, sound

bites will be loaded into memory from files using the SoundPool.load command. Loaded sound bites can

be played over and over again using the SoundPool.play command.

A playing sound is called a sound stream. Individual sound streams can be paused (SoundPool.pause),

individually or as a group, resumed (SoundPool.resume) and stopped (SoundPool.stop). Other stream

parameters (priority, volume and rate) can be changed on the fly.

The SoundPool.release command closes the SoundPool. A new SoundPool can then be opened for a

different phase of the game. SoundPool.release is automatically called when the program run is

terminated.

Original Author Paul Laughton, 2011 Page 183 De Re BASIC!

Commands

Soundpool.open <MaxStreams_nexp>

The MaxStreams expression specifies the number of Soundpool streams that can be played at once. If

the number of streams to be played exceeds this value, the lowest priority streams will be terminated.

Note: A stream playing via audio.play is not counted as a Soundpool stream.

Soundpool.load <soundID_nvar>, <file_path_sexp>

The file specified in <file_path_sexp> is loaded. Its sound ID is returned in <soundID_nvar>. The sound ID

is used to play the sound and also to unload the sound. The sound ID will be returned as zero if the file

was not loaded for some reason.

The default file path is "sdcard/rfo-basic/data/"

Note: It can take a few hundred milliseconds for the sound to be loaded. Insert a "Pause 500" statement

after the load if you want to play the sound immediately following the load command.

Soundpool.unload <soundID_nexp>

The specified loaded sound is unloaded.

Soundpool.play <streamID_nvar>, <soundID_nexp>, <rightVolume_nexp>,

<leftVolume_nexp>, <priority_nexp>, <loop_nexp>, <rate_nexp>

Starts the specified sound ID playing.

The stream ID is returned in <streamID_nvar>. If the stream was not started, the value returned will be

zero. The stream ID is used to pause, resume and stop the stream. It is also used in the stream

modification commands (Soundpool.setrate, Soundpool.setvolume, Soundpool.setpriority and

Soundpool.setloop).

The left and right volume values must be in the range of 0 to 0.99 with zero being silent.

The priority is a positive value or zero. The lowest priority is zero.

The loop value of -1 will loop the playing stream forever. Values other than -1 specify the number of

times the stream will be replayed. A value of 1 will play the stream twice.

The rate value changes the playback rate of the playing stream. The normal rate is 1. The minimum rate

(slow) is 0.5. The maximum rate (fast) is 1.85.

Soundpool.setvolume <streamID_nexp>, <leftVolume_nexp>, <rightVolume_nexp>

Changes the volume of a playing stream.

The left and right volume values must be in the range of 0 to 0.99 with zero being silent.

Original Author Paul Laughton, 2011 Page 184 De Re BASIC!

Soundpool.setrate <streamID_nexp>, <rate_nexp>

Changes the playback rate of the playing stream.

The normal rate is 1. The minimum rate (slow) is 0.5. The maximum rate (fast) is 1.85.

Soundpool.setpriority <streamID_nexp>, <priority_nexp>

Changes the priority of a playing stream.

The lowest priority is zero.

Soundpool.pause <streamID_nexp>

Pauses the playing of the specified stream. If the stream ID is zero, all streams will be paused.

Soundpool.resume <streamID_nexp>

Resumes the playing of the specified stream. If the stream ID is zero, all streams will be resumed.

Soundpool.stop <streamID_nexp>

Stops the playing of the specified stream.

Soundpool.release

Closes the SoundPool and releases all resources. Soundpool.open can be called to open a new

SoundPool.

GPS

These commands provide access to the raw location data reported by an Android device's GPS

hardware. Before attempting to use these commands, make sure that you have GPS turned on in the

Android Settings Application.

The Sample Program file, f15_gps.bas is a running example of the use of the GPS commands.

There are two kinds of data reports: GPS status and location data. They are not reported at the same

time, so there is no guarantee that overlapping information matches. For example, the location data

report includes a count of the satellites used in the most recent location fix. The same information can

be derived from the GPS status report. If number of detected satellites changes between reports, the

two numbers do not agree.

GPS Control commands

Gps.open {{<status_nvar>},{<time_nexp>},{<distance_nexp>}}

Connects to the GPS hardware and starts it reporting location information. This command must be

issued before using any of the other GPS commands.

The three parameters are all optional; use commas to indicate missing parameters. The parameters are

available for advanced usage. The most common way to use this command is simply GPS.open.

Original Author Paul Laughton, 2011 Page 185 De Re BASIC!

If you provide a status return variable <status_nvar>, it is set to 1.0 (TRUE) if the open succeeds, or 0.0

(FALSE) if the open fails. If the open fails, you may get information about the failure from the

GETERROR$() function.

The time interval expression <time_nexp> sets the minimum time between location updates. The time is

in milleseconds. If you do not set an interval, it defaults to the minimum value allowed by your Android

device. This is typically one second. Note: to reduce battery usage, Android recommends a minimum

interval of five minutes.

If you provide a distance parameter <distance_nexp>, it is a numerical expression that sets the minimum

distance between location updates, in meters. That is, your program will not be informed of location

changes until your device has moved at least as far as the minimum distance setting. If you do not set a

distance, any location change that can be detected will be reported.

This command attempts to get an initial "last known location". If the GPS hardware does not report a

last known location, BASIC! tries to get one from the network location service. If neither source can

provide one, the location information is left empty. If you use GPS commands to get location

information before the GPS hardware starts reporting current location information, you will get this

"last known location" data. The last known location may be stale, hours or days old, and so may not be

useful.

Gps.close

Disconnects from the GPS hardware and stops the location reports. GPS is automatically closed when

you stop your BASIC! program. GPS is not turned off if you tap the HOME key while your GPS program is

running.

Gps.status {{<status_var>}, {<infix_nvar>},{inview_nvar}, {<sat_list_nexp>}}

Returns the data from a GPS status report. The parameters are all optional; use commas to indicate

omitted parameters (see Optional Parameters).

This kind of report contains the type of the last GPS event and a list of the satellites that were detected

by the GPS hardware when that event occurred. As a convenience, this command analyzes the satellite

list to report how many satellites were detected ("in view") and how many of those were used in the last

location fix ("in fix").

The GPS status report is not timestamped, and the first event reported to your program may be stale.

Do not rely on the data from the first status report alone to determine when the GPS hardware gets a

current location fix..

<status_var>: If provided, this variable returns the type of last GPS event that occurred. If you provide a

numeric variable, the event type is reported as a number. If it is a string variable, the event type is

reported as an English-language event name.

Event Number Event Name Meaning

Original Author Paul Laughton, 2011 Page 186 De Re BASIC!

1 Started The GPS system has been started, no location fixed yet

2 Stopped The GPS system has been stopped

3 First Fix The GPS system has received its first location fix since starting

4 Updated The GPS system has updated its location data

<infix_nvar>: If provided, this numeric variable returns the number of satellites used in the last location

fix. This is the number of satellites in the satellite list describe below whose "infix" value is TRUE (non-

zero). If the status report could not get a satellite list the number is unknown, so the variable is set to -1.

<inview_nvar>: If provided, this numeric variable returns the number of satellites detected by the GPS

hardware. This is the number of satellites in the satellite list described below that have current data. It is

not necessarily the size of the list. If the status report could not get a satellite list the number is

unknown, so the variable is set to -1.

<sat_list_nexp>: If provided, the value of this numeric expression is used as a list pointer. If the value is

not a valid numeric list pointer, and the numeric expression is a single numeric variable, then a new list

is created and the numeric variable is set to point to the new list.

The satellite list is a list of bundle pointers. When the GPS system reports GPS status, it provides data

collected from the satellites it can detect. The data from each satellite is put in a bundle. The satellite list

has pointers to all of the satellite data bundles. You can use these pointers with any Bundle command,

just like any other bundle pointer.

If you provide an existing list, any bundles already in the list are cleared, except for the identifying

pseudo-random number (PRN). Anything else in the list is discarded. Then the new satellite data is

written into the satellite bundle. This is done so that a satellite that is lost and then regained will be

remembered in the satellite bundle, but its stale data will not be kept.

The number of satellite bundles with complete data matches the value of the <inview_var>. These

bundles are listed first. Any cleared bundles for satellites not currently visible are at the end of the list.

Each satellite bundle has five key/value pairs. All values are numeric. The value of "infix" is interpreted

as logical (Boolean).

KEY VALUE

prn Pseudo-Random Number assigned to the satellite for identification

elevation Elevation in degrees

azimuth Azimuth in degrees

snr Signal-to-noise ratio: a measure of signal strength

infix TRUE (non-zero) if the satellite’s data was used in the last location fix, else FALSE (0.0)

This is the only GPS command that returns information from both kinds of GPS data. The satellite count

returned in <count_nvar> comes from the location data report, and the satellite list returned in the

satellite list comes from the GPS status report. If nothing changes between reports, the number of

Original Author Paul Laughton, 2011 Page 187 De Re BASIC!

satellites with infix set TRUE is the same as the satellite count value, but this condition cannot be

guaranteed.

The satellite count value is also returned by the GPS.location command. The satellite list is also returned

or updated by the GPS.status command. This command, GPS.satellites, is retained for backward-

compatibility and for convenience.

For example, let’s say the most recent GPS status report had data from three satellites with PRNs 4, 7,

and 29.

GPS.OPEN sts

GPS.STATUS , , inView, sats

DEBUG.DUMP.LIST sats % may print 7.0, 29.0, 4.0

Assume appropriate delays after the GPS.open and that DEBUG is enabled. Another GPS status report

may report data from satellites 4, 7, and 8. Then the list dump might show 7.0, 4.0, 8.0, 29.0. The order

is unpredictable, except that 29.0 will be last, because it is not currently visible. In both cases, the value

of inView is 3.0.

Debug.dump.bundle of the satellite bundle with PRN 4 might show this:

Dumping Bundle 11

prn: 4.0

snr: 17.0

infix: 0.0

elevation: 25.0

azimuth: 312.0

GPS Location commands

These commands report the values returned by the most recent GPS location report. The Gps.satellites

command also returns the list of satellites contained in a GPS status report.

A location report contains:
 the location provider

 the number of satellites used to generate the data in the report

 the time when the data was reported

 an estimate of the accuracty of the location components

 the location components:

o latitude

o longitude

o altitude

o bearing

o speed

There are individual commands available to read each element of a location report. If you use separate

GPS commands to read different components of the location data, you don’t know if the different

Original Author Paul Laughton, 2011 Page 188 De Re BASIC!

components came from the same location report. To be certain of consistent data, get all of the location

components from a single Gps.location command.

Gps.location {{<time_nvar>}, {<prov_svar>}, {<count_nvar}, {<acc_nvar>},

{<lat_nvar>}, {<long_nvar>}, {<alt_nvar>}, {<bear_nvar>}, {<speed_nvar>}}

Returns the data from a single GPS location report. It returns all of the data provided by all of the

individual GPS location component commands below, except that it does not return the satellite list of

the Gps.satellites command.

The parameters are all optional; use commas to indicate missing parameters (see Optional Parameters).

All of the parameters are variable names, so if any parameter is not provided, the corresponding data is

not returned.

The parameters are:
<time_nvar>: time of the location fix, in milliseconds since the epoch, as reported by Gps.time.

<prov_svar>: the location provider, as reported by Gps.provider.

<count_nvar>: the number of satellites used to generate the location fix, as reported by

Gps.satellites.

<acc_nvar>: an estimate of the accuracy of the location fix, in meters, as reported by

Gps.accuracy.

<lat_nvar>: current latitude, in decimal degrees, as reported by Gps.latitude.

<long_nvar>: current longitude, in decimal degrees, as reported by Gps.longitude.

<alt_nvar>: current altitude, in meters, as reported by Gps.altitude.

<bear_nvar>: current bearing, in compass degrees, as reported by Gps.bearing.

<speed_nvar>: current speed, in meters per second, as reported by Gps.speed.

Gps.time <nvar>

Returns the time of the last GPS fix in milliseconds since "the epoch", January 1, 1970, UTC.

Gps.provider <svar>

Returns the name of the location provider in <svar>. Normally this is "gps". The first time you read

location data, you get the last known location, which may come from either the GPS hardware or the

network location service. If it came from the network, this command returns "network". If neither

provider reported a last known location, the provider <svar> is the empty string, "".

Gps.satellites {{<count_nvar>}, {<sat_list_nexp>}}

Returns the number of satellites used for the last GPS fix and a list of the satellites known to the GPS

hardware.

Both parameters are optional. If you omit <count_nvar> but use <sat_list_nexp>, keep the comma.

If you provide a numeric variable <count_nvar>, it is set to the number of satellites used for the most

recent location data. If the location report did not provide a satellite count, <count_nvar> is set to -1.

Original Author Paul Laughton, 2011 Page 189 De Re BASIC!

For a description of the satellite list pointer expression <sat_list_nexp>, see the <sat_list_nexp>

parameter of the Gps.status command, above.

Gps.accuracy <nvar>

Returns the accuracy level in <nvar>. If non-zero, this is an estimate of the uncertainty in the reported

location, measured in meters. A value of zero means the location is unknown.

Gps.latitude <nvar>

Returns the latitude in decimal degrees in <nvar>.

Gps.longitude <nvar>

Returns the longitude in decimal degrees in <nvar>.

Gps.altitude <nvar>

Returns the altitude in meters in <nvar>.

Gps.bearing <nvar>

Returns the bearing in compass degrees in <nvar>.

Gps.speed <nvar>

Returns the speed in meters per second in <nvar>.

Sensors

Introduction

Android devices can have several types of Sensors. Currently, Android's pre-defined Sensors are:

Name of Sensor Type Notes

Accelerometer 1 As of API 3 (Cupcake)

Magnetic Field 2 As of API 3

Orientation 3 As of API 3, deprecated API 8

Gyroscope 4 As of API 3

Light 5 As of API 3

Pressure 6 As of API 3

Temperature 7 As of API 3, deprecated API 14

Proximity 8 As of API 3

Gravity 9 As of API 9 (Gingerbread)

Linear Acceleration 10 As of API 9

Rotation Vector 11 As of API 9

Relative Humidity 12 As of API 14 (Ice Cream Sandwich)

Ambient Temperature 13 As of API 14

Uncalibrated Magnetic Field 14 As of API 18 (Jellybean MR2)

Game Rotation Vector 15 As of API 18

Uncalibrated Gyroscope 16 As of API 18

Original Author Paul Laughton, 2011 Page 190 De Re BASIC!

Significant Motion 17 As of API 18

Step Detector 18 As of API 19 (KitKat)

Step Counter 19 As of API 19

Geomagnetic Rotation Vector 20 As of API 19

Some details about (most) of these sensors can be found at Android's Sensor Event

(http://developer.android.com/reference/android/hardware/SensorEvent.html) web page.

Not all Android devices have all of these Sensors. Some Android devices may have none of these

sensors. The BASIC! command, sensors.list, can be used to provide an inventory of the sensors available

on a particular device.

Some newer devices may have sensors that are not currently supported by BASIC! Those sensors will be

reported as "Unknown, Type = NN" where NN is the sensor type number.

Sensor Commands

Sensors.list <sensor_array$[]>

Writes information about the sensors available on the Android device into the <sensor_array$[]>

parameter. If the array exists, it is overwritten. Otherwise a new array is created. The result is always a

one-dimensional array.

The array elements contain the names and types of the available sensors. For example, one element

may be "Gyroscope, Type = 4". The following program snippet prints the elements of the sensor list.

SENSORS.LIST sensorarray$[]

ARRAY.LENGTH size, sensorarray$[]

FOR index = 1 TO size

 PRINT sensorarray$[index]

NEXT index

END

Sensors.open <type_nexp>{:<delay_nexp>}{, <type_nexp>{:<delay_nexp>}, ...}

Opens a list of sensors for reading. The parameter list is the type numbers of the sensors to be opened,

followed optionally by a colon (':') and a number (0, 1, 2, or 3) that specifies the delay in sampling the

sensor. 3 is the default (slowest).

This table gives a general idea of what the rate values mean. The delay values are only "suggestions" to

the sensors, which may alter the real delays, and do not apply to all sensors. Faster settings use more

battery.

Value Name Typical Delay Typical Usage

3 Normal 200 ms Default: suitable for screen orientation changes

2 UI 60 ms Rate suitable for the user interface

1 Game 20 ms Rate suitable for game play

0 Fastest 0 ms Sample as fast as possible

http://developer.android.com/reference/android/hardware/SensorEvent.html
http://developer.android.com/reference/android/hardware/SensorEvent.html

Original Author Paul Laughton, 2011 Page 191 De Re BASIC!

Example:
SENSORS.OPEN 1:1, 3 % Monitor the Acceleration sensor at Game rate

% and the Orientation sensor at Normal rate.

This command must be executed before issuing any Sensors.read commands. You should only open the

sensors that you actually want to read. Each sensor opened increases battery drain and the background

CPU usage.

BASIC! uses the colon character to separate multiple commands on a single line. The use of colon in this

command conflicts with that feature, so you must use caution when using both features together.

If you put any colons on a line after this command, the pre-processor always assumes the colons are

part of the command and not command separators. The Sensors.open command must be either on a

line by itself or placed last on a multi-command line.

Sensors.read sensor_type_nexp, p1_nvar, p2_nvar, p3_nvar

This command returns that latest values from the sensors specified by the "sensor_type" parameters.

The values are returned are placed into the p1, p2 and p3 parameters. The meaning of these parameters

depends upon the sensor being read. Not all sensors return all three parameter values. In those cases,

the unused parameter values will be set to zero. See Android's Sensor Event web page for the meaning

of these parameters.

Sensors.close

Closes the previously opened sensors. The sensors' hardware will be turned off preventing battery drain.

Sensors are automatically closed when the program run is stopped via the BACK key or Menu->Stop.

System

The System commands provide for the execution of System commands on non-rooted devices.

The SU commands provide for the execution of Superuser commands on rooted devices. See the Sample

Program, f36_superuser.bas, for an example using these commands.

The App commands provide for sending messages through the Android system to other applications on

your Android device.

The App commands are not related to System or SU, but they are typically used to replace commands of

the form System.write "am start <parameter-list>" or System.write "am broadcast <parameter-list>".

System Commands

System.open

Opens a shell to execute system commands. The working directory is set to "rfo-basic". If the working

directory does not exist, it is created. If you open a command shell with either Su.open or System.open,

you can't open another one of either type without first closing the open one.

http://developer.android.com/reference/android/hardware/SensorEvent.html

Original Author Paul Laughton, 2011 Page 192 De Re BASIC!

System.write <sexp>

Executes a System command.

System.read.ready <nvar>

Tests for responses from a System.write command. If the result is non-zero, then response lines are

available.

Not all System commands return a response. If there is no response returned after a few seconds then it

should be assumed that there will be no response.

System.read.line <svar>

Places the next available response line into the string variable.

System.close

Exits the System Shell mode.

Superuser Commands

Su.open

Requests Superuser permission. If granted, opens a shell to execute system commands. The working

directory is set to /. If you open a command shell with either Su.open or System.open, you can't open

another one of either type without first closing the open one.

Su.write <sexp>

Executes a Superuser command.

Su.read.ready <nvar>

Tests for responses from a Su.write command. If the result is non-zero, then response lines are

available.

Not all Superuser commands return a response. If there is no response returned after a few seconds

then it should be assumed that there will be no response.

Su.read.line <svar>

Places the next available response line into the string variable.

Su.close

Exits the Superuser mode.

App Commands

App.broadcast <action_sexp>, <data_uri_sexp>, <package_sexp>, <component_sexp>,

<mime_type_sexp>, <categories_sexp>, <extras_bptr_nexp>, <flags_nexp>

Creates a system message and broadcasts it to other applications on your device. The message is called

an Intent. The Intent will be received by any application that has the right Intent Filter.

Original Author Paul Laughton, 2011 Page 193 De Re BASIC!

All of the parameters are optional; use commas to indicate omitted parameters (see Optional

Parameters). See App.start, below, for parameter definitions.

App.start <action_sexp>, <data_uri_sexp>, <package_sexp>, <component_sexp>,

<mime_type_sexp>, <categories_sexp>, <extras_bptr_nexp>, <flags_nexp>

Sends a message to the system, called an Intent, requesting a specific application or type of application

to start. If more than one app can handle the request, the system puts up a chooser for you.

All of the parameters are optional. Use commas to indicate omitted parameters (see Optional

Parameters). You will almost never need to use all of the parameters in one command.

The first six parameters are string expressions: action, data URI, package name, component name, MIME

type, and a list of categories separated by commas (the commas are part of the string expression).

The last two parameters are numeric expressions. One is a pointer to a bundle that contains "extras"

that are attached to the message. The other is a single number representing one or more flag values.

For parameter values, consult the documentation of the Android system and the app you want to start.

Parameter Meaning
am Command

Equivalent

action An Action defined by Android or by the target application -a

data URI Data or path to data; BASIC! URI-encodes this string -d

package name Name of the target application’s package (sometimes called ID) -n [Note 2]

component name Name of a component within the target application -n [Note 2]

MIME type MIME-type of the data, may be used without a data URI -t

categories Comma-separated list of Intent categories -c [Note 3]

"extras" bundle ptr Pointer to an existing bundle containing "extras" values -e [Note 4]

flags Sum of numeric values of one or more flags -f

Notes:

1. You must use string or numeric values, not Android-defined constants, for actions, types, categories,

and flags. For example, you can use the string "android.intent.action.MAIN", but you can not use

the Android symbol ACTION_MAIN.

2. If you specify a component name, you must also specify the package name, even though the

package name is often part of the component name. For example, these are equivalent:

SYSTEM.WRITE "am -n com.android.calculator2.Calculator"

APP.START , , "com.android.calculator2", "com.android.calculator2.Calculator"

Usually you can use this pattern:

pkg$ = "com.android.calculator2" : comp$ = pkg$ + ".Calculator"

APP.START , , pkg$, comp$

3. A categories parameter may contain several categories separated by commas, for example:

cats$ = "android.intent.category.BROWSABLE, android.intent.category.MONKEY"

cats$ = cat1$ + "," + cat2$ + "," + cat3$

4. You must create and populate the "extras" bundle before passing its pointer to an App command.

Presently only string extras and float extras are supported (the BASIC! data types).

Original Author Paul Laughton, 2011 Page 194 De Re BASIC!

5. When your program uses an Intent to start another app, the second app can use another Intent to

return results. BASIC! does not yet support this return path. Your program can retrieve data that

another app leaves in a file or in the clipboard, but it cannot yet retrieve data from a return Intent.

Original Author Paul Laughton, 2011 Page 195 De Re BASIC!

Appendix A – Command List

! - Single Line Comment, 51
!! - Block Comment, 52
- Format Line, 27
% - Middle of Line Comment, 52
? {<exp> {,|;}} ..., 94
ABS(<nexp>), 56
ACOS(<nexp>), 59
App.broadcast <action_sexp>, <data_uri_sexp>, <package_sexp>, <component_sexp>,

<mime_type_sexp>, <categories_sexp>, <extras_bptr_nexp>, <flags_nexp>, 192
App.start <action_sexp>, <data_uri_sexp>, <package_sexp>, <component_sexp>, <mime_type_sexp>,

<categories_sexp>, <extras_bptr_nexp>, <flags_nexp>, 193
Array.average <Average_nvar>, Array[{<start>,<length>}], 40
Array.copy SourceArray$[{<start>,<length>}], DestinationArray$[{{-}<extras>}], 40
Array.copy SourceArray[{<start>,<length>}], DestinationArray[{{-}<extras>}], 40
Array.delete Array[], Array$[] ..., 41
Array.dims Source[]{, {Dims[]}{, NumDims}}, 41
Array.fill Array$[{<start>,<length>}], <sexp>, 41
Array.fill Array[{<start>,<length>}], <nexp>, 41
Array.length n, Array$[{<start>,<length>}], 41
Array.length n, Array[{<start>,<length>}], 41
Array.load Array$[], <sexp>, ..., 41
Array.load Array[], <nexp>, ..., 41
Array.max <max_nvar> Array[{<start>,<length>}], 42
Array.min <min_nvar>, Array[{<start>,<length>}], 42
Array.reverse Array$[{<start>,<length>}], 42
Array.reverse Array[{<start>,<length>}], 42
Array.search Array$[{<start>,<length>}], <value_sexp>, <result_nvar>{,<start_nexp>}, 42
Array.search Array[{<start>,<length>}], <value_nexp>, <result_nvar>{,<start_nexp>}, 42
Array.shuffle Array[{<start>,<length>}], 42
Array.sort Array[{<start>,<length>}], 42
Array.std_dev <sd_nvar>, Array[{<start>,<length>}], 43
Array.sum <sum_nvar>, Array[{<start>,<length>}], 43
Array.variance <v_nvar>, Array[{<start>,<length>}], 43
ASCII(<sexp>{, <index_nexp>}), 61
ASIN(<nexp>), 59
ATAN(<nexp>), 59
ATAN2(<nexp_y>, <nexp_x>), 59
Audio.isdone <lvar>, 182
Audio.length <length_nvar>, <aft_nexp>, 181
Audio.load <aft_nvar>, <filename_sexp>, 180
Audio.loop, 181
Audio.pause, 181
Audio.play <aft_nexp>, 180
Audio.position.current <nvar>, 181
Audio.position.seek <nexp>, 181
Audio.record.start <fn_svar>, 182

Original Author Paul Laughton, 2011 Page 196 De Re BASIC!

Audio.record.stop, 182
Audio.release <aft_nexp>, 182
Audio.stop, 181
Audio.volume <left_nexp>, <right_nexp>, 181
Back.resume, 88
BACKGROUND(), 62
Background.resume, 139
BAND(<nexp1>, <nexp2>), 55
BIN$(<nexp>), 69
BIN(<sexp>), 60
BNOT(<nexp>, 56
BOR(<nexp1>, <nexp2>), 55
Browse <url_sexp>, 115
Bt.close, 123
Bt.connect {0|1}, 123
Bt.device.name <svar>, 125
Bt.disconnect, 123
Bt.onReadReady.resume, 125
Bt.open {0|1}, 123
Bt.read.bytes <svar>, 125
Bt.read.ready <nvar>, 124
Bt.reconnect, 123
Bt.set.UUID <sexp>, 125
Bt.status {{<connect_var>}{, <name_svar>}{, <address_svar>}}, 124
Bt.write {<exp> {,|;}} ..., 124
Bundle.clear <pointer_nexp>, 49
Bundle.contain <pointer_nexp>, <key_sexp> , <contains_nvar>, 49
Bundle.create <pointer_nvar>, 48
Bundle.get <pointer_nexp>, <key_sexp>, <nvar>|<svar>, 48
Bundle.keys <bundle_ptr_nexp>, <list_ptr_nexp>, 48
Bundle.put <pointer_nexp>, <key_sexp>, <value_nexp>|<value_sexp>, 48
Bundle.remove <pointer_nexp>, <key_sexp>, 49
Bundle.type <pointer_nexp>, <key_sexp>, <type_svar>, 49
BXOR(<nexp1>, <nexp2>), 56
Byte.close <file_table_nexp>, 109
Byte.copy <file_table_nexp>,<output_file_sexp>, 112
Byte.eof <file_table_nexp>, <lvar>, 111
Byte.open {r|w|a}, <file_table_nvar>, <path_sexp>, 109
Byte.position.get <file_table_nexp>, <position_nexp>, 111
Byte.position.mark {{<file_table_nexp>}{, <marklimit_nexp>}}, 112
Byte.position.set <file_table_nexp>, <position_nexp>, 111
Byte.read.buffer <file_table_nexp>, <count_nexp>, <buffer_svar>, 111
Byte.read.byte <file_table_nexp> {,<nvar>}..., 109
Byte.read.number <file_table_nexp> {,<nvar>...}, 110
Byte.truncate <file_table_nexp>,<length_nexp>, 112
Byte.write.buffer <file_table_nexp>, <sexp>, 111
Byte.write.byte <file_table_nexp> {{,<nexp>}...{,<sexp>}}, 110
Byte.write.number <file_table_nexp> {,<nexp>}..., 110

Original Author Paul Laughton, 2011 Page 197 De Re BASIC!

Call <user_defined_function>, 77
CBRT(<nexp>), 58
CEIL(<nexp>), 57
CHR$(<nexp>, ...), 64
Clipboard.get <svar>, 129
Clipboard.put <sexp>, 129
CLOCK(), 62
Cls, 95
Console.front, 95
Console.line.count <count_nvar >, 95
Console.line.text <line_nexp>, <text_svar>, 95
Console.line.touched <line_nvar> {, <press_lvar>}, 95
Console.save <filename_sexp>, 95
Console.title { <title_sexp>}, 96
ConsoleTouch.resume, 88
COS(<nexp>), 59
COSH(<nexp>), 59
D_U.break, 81
D_U.continue, 81
Debug.dump.array Array[], 91
Debug.dump.bundle <bundlePtr_nexp>, 91
Debug.dump.list <listPtr_nexp>, 91
Debug.dump.scalars, 91
Debug.dump.stack <stackPtr_nexp>, 91
Debug.echo.off, 90
Debug.echo.on, 90
Debug.off, 90
Debug.on, 90
Debug.print, 91
Debug.show, 93
Debug.show.array Array[], 91
Debug.show.bundle <bundlePtr_nexp>, 92
Debug.show.list <listPtr_nexp>, 92
Debug.show.program, 92
Debug.show.scalars, 91
Debug.show.stack <stackPtr_nexp>, 92
Debug.show.watch, 92
Debug.watch var, ..., 92
DECODE$(<charset_sexp>, <buffer_sexp>), 68
DECODE$(<type_sexp>, {<qualifier_sexp>}, <source_sexp>), 66
Decrypt <pw_sexp>, <encrypted_svar>, <decrypted_svar>, 130
Device <nexp>|<nvar>, 135
Device <svar>, 135
Dialog.message {<title_sexp>}, {<message_sexp>}, <sel_nvar> {, <button1_sexp>{, <button2_sexp>{,

<button3_sexp>}}}, 96
Dialog.select <sel_nvar>, < Array$[]>|<list_nexp>, {,<title_sexp>}, 97
Dim Array [n, n, ...], Array$[n, n, ...] ..., 40
Do / Until <lexp>, 80

Original Author Paul Laughton, 2011 Page 198 De Re BASIC!

Echo.off, 91
Echo.on, 90
Email.send <recipient_sexp>, <subject_sexp>, <body_sexp>, 125
ENCODE$(<charset_sexp>, <source_sexp>), 67
ENCODE$(<type_sexp>, {<qualifier_sexp>}, <source_sexp>), 66
Encrypt {<pw_sexp>}, <source_sexp>, <encrypted_svar>, 129
End{ <msg_sexp>}, 89
ENDS_WITH(<sub_sexp>, <base_sexp>), 62
Exit, 89
EXP(<nexp>), 58
F_N.break, 80
F_N.continue, 80
File.delete <lvar>, <path_sexp>, 104
File.dir <path_sexp>, Array$[] {, <dirmark_sexp>}, 104
File.exists <lvar>, <path_sexp>, 104
File.mkdir <path_sexp>, 104
File.rename <old_path_sexp>, <new_path_sexp>, 105
File.root <svar>, 105
File.size <size_nvar>, <path_sexp>, 105
File.type <type_svar>, <path_sexp>, 105
FLOOR(<nexp>), 57
Fn.def name|name$({nvar}|{svar}|Array[]|Array$[], ... {nvar}|{svar}|Array[]|Array$[]), 76
Fn.end, 77
Fn.rtn <sexp>|<nexp>, 77
Font.clear, 93
Font.delete {<font_ptr_nexp>}, 93
Font.load <font_ptr_nvar>, <filename_sexp>, 93
For <nvar> = <nexp> To <nexp> {Step <nexp>} / Next, 79
FORMAT$(<pattern_sexp>, <nexp>), 73
FORMAT_USING$(<locale_sexp>, <format_sexp> { , <exp>}...), 73
FRAC(<nexp>), 57
Ftp.cd <new_directory_sexp>, 121
Ftp.close, 121
Ftp.delete <filename_sexp>, 122
Ftp.dir <list_nvar>, 121
Ftp.get <source_sexp>, <destination_sexp>, 121
Ftp.mkdir <directory_sexp>, 122
Ftp.open <url_sexp>, <port_nexp>, <user_sexp>, <pw_sexp>, 120
Ftp.put <source_sexp>, <destination_sexp>, 121
Ftp.rename <old_filename_sexp>, <new_filename_sexp>, 122
Ftp.rmdir <directory_sexp>, 122
GETERROR$(), 63
GoSub <index_nexp>, <label>... / Return, 83
GoSub <label> / Return, 82
GoTo <index_nexp>, <label>..., 82
GoTo <label>, 82
Gps.accuracy <nvar>, 189
Gps.altitude <nvar>, 189

Original Author Paul Laughton, 2011 Page 199 De Re BASIC!

Gps.bearing <nvar>, 189
Gps.close, 185
Gps.latitude <nvar>, 189
Gps.location {{<time_nvar>}, {<prov_svar>}, {<count_nvar}, {<acc_nvar>}, {<lat_nvar>}, {<long_nvar>},

{<alt_nvar>}, {<bear_nvar>}, {<speed_nvar>}}, 188
Gps.longitude <nvar>, 189
Gps.open {{<status_nvar>},{<time_nexp>},{<distance_nexp>}}, 184
Gps.provider <svar>, 188
Gps.satellites {{<count_nvar>}, {<sat_list_nexp>}}, 188
Gps.speed <nvar>, 189
Gps.status {{<status_var>}, {<infix_nvar>},{inview_nvar}, {<sat_list_nexp>}}, 185
Gps.time <nvar>, 188
Gr.arc <obj_nvar>, left, top, right, bottom, start_angle, sweep_angle, fill_mode, 157
Gr.bitmap.create <bitmap_ptr_nvar>, width, height, 168
Gr.bitmap.crop <new_bitmap_ptr_nvar>, <source_bitmap_ptr_nexp>, <x_nexp>, <y_nexp>,

<width_nexp>, <height_nexp>, 170
Gr.bitmap.delete <bitmap_ptr_nexp>, 169
Gr.bitmap.draw <object_ptr_nvar>, <bitmap_ptr_nexp>, x , y, 170
Gr.bitmap.drawinto.end, 171
Gr.bitmap.drawinto.start <bitmap_ptr_nexp>, 171
Gr.bitmap.fill <bitmap_ptr_nexp>, <x_nexp>, <y_nexp>, 171
Gr.bitmap.load <bitmap_ptr_nvar>, <file_name_sexp>, 169
Gr.bitmap.save <bitmap_ptr_nvar>, <filename_sexp>{, <quality_nexp>}, 170
Gr.bitmap.scale <new_bitmap_ptr_nvar>, <bitmap_ptr_nexp>, width, height {, <smoothing_lexp> }, 169
Gr.bitmap.size <bitmap_ptr_nexp>, width, height, 169
Gr.bounded.touch touched, left, top, right, bottom, 162
Gr.bounded.touch2 touched, left, top, right, bottom, 162
Gr.brightness <nexp>, 156
Gr.camera.autoshoot <bm_ptr_nvar>{, <flash_ mode_nexp> {, focus_mode_nexp} }, 174
Gr.camera.manualShoot <bm_ptr_nvar>{, <flash_ mode_nexp> {, focus_mode_nexp} }, 175
Gr.camera.select 1|2, 173
Gr.camera.shoot <bm_ptr_nvar>, 174
Gr.circle <obj_nvar>, x, y, radius, 158
Gr.clip <object__ptr_nexp>, <left_nexp>,<top_nexp>, <right_nexp>, <bottom_nexp>{, <RO_nexp>}, 178
Gr.close, 156
Gr.cls, 156
Gr.color {{alpha}{, red}{, green}{, blue}{, style}{, paint}}, 152
Gr.front flag, 156
Gr.get.bmpixel <bitmap_ptr_nvar>, x, y, alpha, red, green, blue, 170
Gr.get.params <object_ptr_nexp>, <param_array$[]>, 175
Gr.get.pixel x, y, alpha, red, green, blue, 175
Gr.get.position <object_ptr_nexp>, x, y, 176
Gr.get.textbounds <exp>, left, top, right, bottom, 167
Gr.get.type <object_ptr_nexp>, <type_svar>, 175
Gr.get.value <object_ptr_nexp> {, <tag_sexp>, <value_nvar | value_svar>}..., 176
Gr.getDL <dl_array[]> {, <keep_all_objects_lexp> }, 179
Gr.group <object_number_nvar>{, <obj_nexp>}..., 160
Gr.group.getDL <object_number_nvar>, 160

Original Author Paul Laughton, 2011 Page 200 De Re BASIC!

Gr.group.list <object_number_nvar>, <list_ptr_nexp>, 160
Gr.group.newDL <object_number_nvar>, 161
Gr.hide <object_number_nexp>, 161
Gr.line <obj_nvar>, x1, y1, x2, y2, 157
Gr.modify <object_ptr_nexp> {, <tag_sexp>, <value_nexp | value_sexp>}..., 176
Gr.move <object_ptr_nexp>{{, dx}{, dy}}, 176
Gr.newDL <dl_array[{<start>,<length>}]>, 179
Gr.onGrTouch.resume, 162
Gr.open {{alpha}{, red}{, green}{, blue}{, <ShowStatusBar_lexp>}{, <Orientation_nexp>}}, 152
Gr.orientation <nexp>, 154
Gr.oval <obj_nvar>, left, top, right, bottom, 157
Gr.paint.copy {{<src_nexp>}{, <dst_nexp>}}, 171
Gr.paint.get <object_ptr_nvar>, 171
Gr.paint.reset {<nexp>}, 172
Gr.point <obj_nvar>, x, y, 157
Gr.poly <obj_nvar>, list_pointer {,x,y}, 158
Gr.rect <obj_nvar>, left, top, right, bottom, 157
Gr.render, 154
Gr.rotate.end {<obj_nvar>}, 173
Gr.rotate.start angle, x, y{,<obj_nvar>}, 172
Gr.save <filename_sexp> {,<quality_nexp>}, 175
Gr.scale x_factor, y_factor, 155
Gr.screen width, height{, density }, 155
Gr.screen.to_bitmap <bm_ptr_nvar>, 175
Gr.set.antialias {{<lexp>}{,<paint_nexp>}}, 153
Gr.set.pixels <obj_nvar>, pixels[{<start>,<length>}] {,x,y}, 158
Gr.set.stroke {{<nexp>}{,<paint_nexp>}}, 154
Gr.show <object_number_nexp>, 161
Gr.show.toggle <object_number_nexp>, 161
Gr.statusbar {<height_nvar>} {, showing_lvar}, 154
Gr.statusbar.show <nexp>, 154
Gr.text.align {{<type_nexp>}{,<paint_nexp>}}, 163
Gr.text.bold {{<lexp>}{,<paint_nexp>}}, 163
Gr.text.draw <object_number_nvar>, <x_nexp>, <y_nexp>, <text_object_sexp>, 168
Gr.text.height {<height_nvar>} {, <up_nvar>} {, <down_nvar>}, 166
Gr.text.setfont {{<font_ptr_nexp>|<font_family_sexp>} {, <style_sexp>} {,<paint_nexp}}, 164
Gr.text.size {{<size_nexp>}{,<paint_nexp>}}, 164
Gr.text.skew {{<skew_nexp>}{,<paint_nexp>}}, 164
Gr.text.strike {{<lexp>}{,<paint_nexp>}}, 164
Gr.text.typeface {{<nexp>} {, <style_nexp>} {,<paint_nexp>}}, 165
Gr.text.underline {{<lexp>}{<paint_nexp>}}, 164
Gr.text.width <nvar>, <exp>, 166
Gr.touch touched, x, y, 161
Gr.touch2 touched, x, y, 162
GR_COLLISION(<object_1_nvar>, <object_2_nvar>), 62
GrabFile <result_svar>, <path_sexp>{, <unicode_flag_lexp>}, 108
GrabURL <result_svar>, <url_sexp>{, <timeout_nexp>}, 108
Headset <state_nvar>, <type_svar>, <mic_nvar>, 141

Original Author Paul Laughton, 2011 Page 201 De Re BASIC!

HEX$(<nexp>), 68
HEX(<sexp>), 60
Home, 139
Html.clear.cache, 115
Html.clear.history, 115
Html.close, 115
Html.get.datalink <data_svar>, 114
Html.go.back, 115
Html.go.forward, 115
Html.load.string <html_sexp>, 114
Html.load.url <file_sexp>, 113
Html.open {<ShowStatusBar_lexp> {, <Orientation_nexp>}}, 113
Html.orientation <nexp>, 113
Html.post <url_sexp>, <list_nexp>, 114
Http.post <url_sexp>, <list_nexp>, <result_svar>, 116
HYPOT(<nexp_x>, <nexp_y), 59
If / Then / Else, 78
If / Then / Else / Elseif / Endif, 78
Include FilePath, 83
Inkey$ <svar>, 98
Input {<prompt_sexp>}, <result_var>{, {<default_exp>}{,<canceled_nvar>}}, 97
INT$(<nexp>), 68
INT(<nexp>), 57
IS_IN(<sub_sexp>, <base_sexp>{, <start_nexp>}, 61
IS_NUMBER(<sexp>), 60
Join <source_array$[]>, <result_svar> {, <separator_sexp>{, <wrapper_sexp}}, 131
Join.all <source_array$[]>, <result_svar> {, <separator_sexp>{, <wrapper_sexp}}, 131
Kb.hide, 100
Kb.resume, 101
Kb.show, 100
Kb.showing <lvar>, 100
Kb.toggle, 100
Key.resume, 89
LowMemory.resume, 89
LEFT$(<sexp>, <count_nexp>), 64
LEN(<sexp>), 60
Let, 54
List.add <pointer_nexp>{, <exp>}..., 45
List.add.array numeric_list_pointer, Array[{<start>,<length>}], 45
List.add.array string_list_pointer, Array$[{<start>,<length>}], 45
List.add.list <destination_list_pointer_nexp>, <source_list_pointer_nexp>, 45
List.clear <pointer_nexp>, 46
List.create N|S, <pointer_nvar>, 45
List.get <pointer_nexp>, <index_nexp>, <var>, 46
List.insert <pointer_nexp>, <index_nexp>, <sexp>|<nexp>, 46
List.remove <pointer_nexp>,<index_nexp>, 46
List.replace <pointer_nexp>, <index_nexp>, <sexp>|<nexp>, 46
List.search <pointer_nexp>, value|value$, <result_nvar>{,<start_nexp>}, 46

Original Author Paul Laughton, 2011 Page 202 De Re BASIC!

List.size <pointer_nexp>, <nvar>, 46
List.toArray <pointer_nexp>, Array$[] | Array[], 47
List.type <pointer_nexp>, <svar>, 46
LOG(<nexp>), 58
LOG10(<nexp>), 58
LOWER$(<sexp>), 68
MAX(<nexp>, <nexp>), 57
MenuKey.resume, 88
MID$(<sexp>, <start_nexp>{, <count_nexp>}), 64
MIN(<nexp>, <nexp>), 57
mkdir <path_sexp>, 104
MOD(<nexp1>, <nexp2>), 57
MyPhoneNumber <svar>, 126
Notify <title_sexp>, <subtitle_sexp>, <alert_sexp>, <wait_lexp>, 141
OCT$(<nexp>), 69
OCT(<sexp>), 60
OnBackground:, 139
OnBackKey:, 88
OnBtReadReady:, 125
OnConsoleTouch:, 88
OnError:, 87
OnGrTouch:, 162
OnKbChange:, 101
OnKeyPress:, 88
OnLowMemory:, 89
OnMenuKey:, 88
OnTimer:, 129
Pause <ticks_nexp>, 142
Phone.call <sexp>, 126
Phone.dial <sexp>, 126
Phone.info <nexp>|<nvar>, 136
Phone.rcv.init, 126
Phone.rcv.next <state_nvar>, <number_svar>, 126
PI(), 59
Popup <message_sexp>{{, <x_nexp>}{, <y_nexp>}{, <duration_lexp>}}, 98
POW(<nexp1>, <nexp2>), 58
Print {<exp> {,|;}} ..., 94
RANDOMIZE({<nexp>}), 56
Read.data <number>|<string> {,<number>|<string>...,<number>|<string>}, 89
Read.from <nexp>, 90
Read.next <var>, ..., 89
Rem, 51
REPLACE$(<sexp>, <argument_sexp>, <replace_sexp>), 65
RIGHT$(<sexp>, <count_nexp>), 64
Ringer.get.mode <nvar>, 130
Ringer.get.volume <vol_nvar> { , <max_nvar>, 130
Ringer.set.mode <nexp>, 130
Ringer.set.volume <nexp>, 131

Original Author Paul Laughton, 2011 Page 203 De Re BASIC!

RND(), 56
ROUND(<value_nexp>{, <count_nexp>{, <mode_sexp>}}), 57
Run <filename_sexp> {, <data_sexp>}, 84
Screen rotation, size[], realsize[], density, 137
Screen.rotation <nvar>, 138
Screen.size size[], realsize[], density, 138
Select <sel_nvar>, < Array$[]>|<list_nexp>, {,<title_sexp> {, <message_sexp> } } {,<press_lvar> }, 99
Sensors.close, 191
Sensors.list <sensor_array$[]>, 190
Sensors.open <type_nexp>{:<delay_nexp>}{, <type_nexp>{:<delay_nexp>}, ...}, 190
Sensors.read sensor_type, p1, p2, p3, 191
SGN(<nexp>), 56
SHIFT(<value_nexp>, <bits_nexp>), 61
SIN(<nexp>), 59
SINH(<nexp>), 59
Sms.rcv.init, 126
Sms.rcv.next <svar>, 127
Sms.send <number_sexp>, <message_sexp>, 126
Socket.client.close, 118
Socket.client.connect <server_sexp>, <port_nexp> { , <wait_lexp> }, 117
Socket.client.read.file <file_nexp>, 118
Socket.client.read.line <line_svar>, 117
Socket.client.read.ready <nvar>, 117
Socket.client.server.ip <svar>, 117
Socket.client.status <status_nvar>, 117
Socket.client.write.bytes <sexp>, 118
Socket.client.write.file <file_nexp>, 118
Socket.client.write.line <line_sexp>, 118
Socket.myIP <array$[]>{, <nvar>}, 118
Socket.myIP <svar>, 118
Socket.server.client.ip <nvar>, 120
Socket.server.close, 120
Socket.server.connect {<wait_lexp>}, 119
Socket.server.create <port_nexp>, 119
Socket.server.disconnect, 120
Socket.server.read.file <file_nexp>, 120
Socket.server.read.line <svar>, 119
Socket.server.read.ready <nvar>, 119
Socket.server.status <status_nvar>, 119
Socket.server.write.bytes <sexp>, 120
Socket.server.write.file <file_nexp>, 120
Socket.server.write.line <line_sexp>, 120
Soundpool.load <soundID_nvar>, <file_path_sexp>, 183
Soundpool.open <MaxStreams_nexp>, 183
Soundpool.pause <streamID_nexp>, 184
Soundpool.play <streamID_nvar>, <soundID_nexp>, <rightVolume_nexp>, <leftVolume_nexp>,

<priority_nexp>, <loop_nexp>, <rate_nexp>, 183
Soundpool.release, 184

Original Author Paul Laughton, 2011 Page 204 De Re BASIC!

Soundpool.resume <streamID_nexp>, 184
Soundpool.setpriority <streamID_nexp>, <priority_nexp>, 184
Soundpool.setrate <streamID_nexp>, <rate_nexp>, 184
Soundpool.setvolume <streamID_nexp>, <leftVolume_nexp>, <rightVolume_nexp>, 183
Soundpool.stop <streamID_nexp>, 184
Soundpool.unload <soundID_nexp>, 183
Split <result_array$[]>, <sexp> {, <test_sexp>}, 131
Split.all <result_array$[]>, <sexp> {, <test_sexp>}, 131
Sql.close <DB_pointer_nvar>, 144
Sql.delete <DB_pointer_nvar>, <table_name_sexp>{,<where_sexp>{,<count_nvar>} }, 147
Sql.drop_table <DB_pointer_nvar>, <table_name_sexp>, 145
Sql.exec <DB_pointer_nvar>, <command_sexp>, 147
Sql.insert <DB_pointer_nvar>, <table_name_sexp>, C1$, V1$, C2$, V2$, ...,CN$, VN$, 145
Sql.new_table <DB_pointer_nvar>, <table_name_sexp>, C1$, C2$, ...,CN$, 144
Sql.next doneFlag, cursorVar {{, svar}...{, array$[]{, nColVar}}}, 146
Sql.open <DB_pointer_nvar>, <DB_name_sexp>, 144
Sql.query <cursor_nvar>, <DB_pointer_nvar>, <table_name_sexp>, <columns_sexp> {, <where_sexp> {,

<order_sexp>} }, 145
Sql.query.length <length_nvar>, <cursor_nvar>, 146
Sql.query.position <position_nvar>, <cursor_nvar>, 146
Sql.raw_query <cursor_nvar>, <DB_pointer_nvar>, <query_sexp>, 147
Sql.update <DB_ptr_nvar>, <table_name_sexp>, C1$, V1$, C2$, V2$,...,CN$, VN${: <where_sexp>}, 147
SQR(<nexp>), 58
Stack.clear <ptr_nexp>, 51
Stack.create N|S, <ptr_nvar>, 50
Stack.isEmpty <ptr_nexp>, <nvar>, 51
Stack.peek <ptr_nexp>, <nvar>|<svar>, 50
Stack.pop <ptr_nexp>, <nvar>|<svar>, 50
Stack.push <ptr_nexp>, <nexp>|<sexp>, 50
Stack.type <ptr_nexp>, <svar>, 51
STARTS_WITH(<sub_sexp>, <base_sexp>{, <start_nexp>}, 61
STR$(<nexp>), 68
STT.listen, 133
STT.results <string_list_ptr_nexp>, 134
Su.close, 192
Su.open, 192
Su.read.line <svar>, 192
Su.read.ready <nvar>, 192
Su.write <sexp>, 192
Sw.begin <exp>, 85
Sw.break, 86
Sw.case <exp >, ..., 85
Sw.case <op><exp >, 86
Sw.default, 86
Sw.end, 86
Swap <nvar_a>|<svar_a>, <nvar_b>|<svar_b>, 142
System.close, 192
System.open, 191

Original Author Paul Laughton, 2011 Page 205 De Re BASIC!

System.read.line <svar>, 192
System.read.ready <nvar>, 192
System.write <sexp>, 192
TAN(<nexp>), 59
Text.close <file_table_nexp>, 106
Text.eof <file_table_nexp>, <lvar>, 107
Text.input <svar>{, { <text_sexp>} , <title_sexp> }, 99
Text.open {r|w|a}, <file_table_nvar>, <path_sexp>, 106
Text.position.get <file_table_nexp>, <position_nvar>, 107
Text.position.mark {{<file_table_nexp>}{, <marklimit_nexp>}}, 108
Text.position.set <file_table_nexp>, <position_nexp>, 107
Text.readln <file_table_nexp> {,<svar>}..., 106
Text.writeln <file_table_nexp>, {<exp> {,|;}} ..., 107
TGet <result_svar>, <prompt_sexp> {, <title_sexp>}, 100
Time {<time_nexp>,} Year$, Month$, Day$, Hour$, Minute$, Second$, WeekDay, isDST, 127
TIME(), 62
TIME(<year_exp>, <month_exp>, <day_exp>, <hour_exp>, <minute_exp>, <second_exp>), 63
Timer.clear, 129
Timer.resume, 129
Timer.set <interval_nexp>, 129
TimeZone.get <tz_svar>, 128
TimeZone.list <tz_list_pointer_nexp>, 128
TimeZone.set { <tz_sexp> }, 128
TODEGREES(<nexp>), 59
Tone <frequency_nexp>, <duration_nexp>{, <duration_chk_lexp}, 142
TORADIANS(<nexp>), 60
TRIM$(<sexp>{, <test_sexp>}), 65
TTS.init, 133
TTS.speak <sexp> {, <wait_lexp>}, 133
TTS.speak.toFile <sexp> {, <path_sexp>}, 133
TTS.stop, 133
UCODE(<sexp>{, <index_nexp>}), 61
UnDim Array[], Array$[], ..., 40
UPPER$(<sexp>), 68
USING$({<locale_sexp>} , <format_sexp> { , <exp>}...), 69
VAL(<sexp>), 60
VERSION$(), 68
Vibrate <pattern_array[{<start>,<length>}]>,<nexp>, 142
VolKeys.off, 143
VolKeys.on, 143
W_R.break, 80
W_R.continue, 80
WakeLock <code_nexp>, 139
While <lexp> / Repeat, 80
WiFi.info {{<SSID_svar>}{, <BSSID_svar>}{, <MAC_svar>}{, <IP_var>}{, <speed_nvar>}}, 139
WifiLock <code_nexp>, 140
WORD$(<source_sexp>, <n_nexp> {, <test_sexp>}), 65

Original Author Paul Laughton, 2011 Page 206 De Re BASIC!

Appendix B – Sample Programs

The programs are loaded into "<pref base drive>/rfo-basic/source/Sample_Programs" when a new

release of BASIC! is installed. You can access them by selecting Menu->Load. Tap the

"Sample_Programs" lines. The sample programs will be listed and can be loaded.

If you load and save one of these programs, the program will be saved in "<pref base drive>/rfo-

basic/source/" not in "<pref base drive>/rfo-basic/source/Sample_Programs"

You can force BASIC! to re-load these programs by:

 Select Menu->Delete

 Navigate to "rfo-basic/source/Sample_Programs/"

 Delete the "f01_vxx.xx_read_me file"

 Exit BASIC! using Menu->Exit or Menu->More->Exit

 Re-enter BASIC!

Original Author Paul Laughton, 2011 Page 207 De Re BASIC!

Appendix C – Launcher Shortcut Tutorial

Introduction

This tutorial will "compile" a BASIC! program and create an "application" that resides on your Android

device home page. This "application" will have its own Icon and Name. The official Android name for

this type of "application" is "Shortcut." The BASIC! application must be installed for this to work.

There is also an option to actually build a standalone application .apk file that does not require the

BASIC! application to be installed. The process is more difficult but it will result in an application that can

be offered on theGoogle Play Store. See Appendix D.

How to Make a Shortcut Application (older versions of Android—prior to

Android 4.0)

1. Start BASIC!

2. Select Menu->Exit orMenu->More->Exit to Exit BASIC!

3. Do a long press on the HOME screen.

4. You should see something like the following:

5. Tap Shortcuts.

6. Scroll down the Select Shortcut page until you see the BASIC! icon with the Launcher Shortcuts Label.

7. Tap the BASIC! Icon.

Original Author Paul Laughton, 2011 Page 208 De Re BASIC!

8. This screen will appear:

9. Fill out the Form exactly as shown.

 The Program File Name is Sample_Programs/f13_animations.bas

 The Icon File Name is cartman.png

 The Shortcut Name is Cartman

10. Tap OK.

11. You should see something like this on your HOME screen:

12. Tap the Cartman Shortcut.

13. BASIC! will start and run the Cartman Jumping Demo.

How to Make a Shortcut Application (newer versions of Android—Android 4.0

and later)

1. Select the Apps Page.

2. At the top of the screen, tap Widgets.

Original Author Paul Laughton, 2011 Page 209 De Re BASIC!

3. Scroll horizontally until you see the BASIC! icon that says Launcher Shortcuts.

4. Touch and hold that entry. It will be moved to the Home page.

5. Continue with step 8, above.

What you need to know

 The icon image file must be located in the "<pref base drive>/rfo-basic/data/" directory.

 The program that you are going to run must be in the "source" directory or one of its sub

directories. In this example, the file was located in the Sample_Programs(d) subdirectory of

the "source(d)" directory.

 The icon should be a .png file. A Google search for "icon" will reveal thousands for free

icons. Just copy your icon into "rfo-basic/data" on the SD card.

 Be very careful to correctly spell the names of the program and icon files. BASIC! does not

check to see if these files actually exist during the "compile" process. If you enter the name

of an icon file that does not exist, your shortcut will have the generic Android icon. If the file

name you specified does not exist, when you tap the Shortcut you will see an error message

in the form of program file in the Editor.

 The Shortcut name should be nine (9) characters or less. Android will not show more than

nine characters.

 You can create as many shortcuts as you home screen(s) can handle.

 Tapping "Cancel" in the Launcher Shortcuts dialog will simply cancel the operation and

return to the home screen.

 If you plan to use a BASIC! Launcher Shortcut, you should always exit BASIC! using Exit-Menu

or Menu->More->Exit. If a Launched program is running, tapping BACK once or twice will

exit BASIC back to the Home Screen.

Original Author Paul Laughton, 2011 Page 210 De Re BASIC!

Appendix D – Building a Standalone Application

Note: BASIC! collaborator Nicolas Mougin, has created a suite of automated tools for generating
standalone applications. These tools can be downloaded from this website:

http://rfo-basic.com

Using Mr. Mougin’s tools, you avoid having to do all of the following.

If you have any questions or problems with this tool you can contact Mr. Mougin and other users of the
tool at the BASIC! forum in this thread:

http://rfobasic.freeforums.org/rfo-basic-app-builder-f20.html

Introduction

This document will demonstrate how to create a standalone application from a BASIC! program. The

resulting application does not need to have BASIC! installed to run. It will have its own application name

and application icon. It may be distributed in the Google Play Store or elsewhere. The process involves

setting up the Android development environment and making some simple, directed changes to the

BASIC! Java source code. Since Google changes the Development Environment every so often, this

procedure does not necessarily reflect the latest version of the ADT.

License Information

BASIC! is distributed under the terms of the GNU GENERAL PUBLIC LICENSE. The license requires that

the source code for "derivative works" be made available to anyone who asks. The author of BASIC!

interprets this to mean that the license applies only to derivatives of the BASIC! source interpreter code.

It does not apply to source code for BASIC! applications, i.e., code that you have written using the BASIC!

language.

Before You Start

Run the sample program, source/my_program.bas.

We are going to turn this program into a practice APK.

Setting Up the Development Environment

These instructions are based on using the Android Developer Tools (ADT) plug-in for the Eclipse

Integrated Development Environment (IDE) to build an Android application.

This is no longer the recommended toolset. Android Studio is now the official IDE for Android. For

information about Android Studio, visit Android’s Developer Tools page at

http://developer.android.com/sdk/index.html.

These instructions will be updated for the new tools in a future version of this manual.

http://rfo-basic.com/
http://rfo-basic.com/
http://rfobasic.freeforums.org/rfo-basic-app-builder-f20.html
http://laughton.com/basic/license.html
http://developer.android.com/sdk/index.html

Original Author Paul Laughton, 2011 Page 211 De Re BASIC!

1. Download and install the latest version of the Java Development Kit (JDK). Find this by Googling

"java jdk download" and going to the listed oracle.com download site. Do not download from

any other site. Note: The JDK download includes the Java Run Time Environment (JRE) which is

also needed.

2. Download and install the "Eclipse IDE for Java Developers" from https://eclipse.org/downloads/.

The current version is 4.4.1 "Luna". You may prefer to download and install an older version

from https://eclipse.org/kepler/ or https://eclipse.org/juno/, because these instructions were

written from "Juno".

3. Visit Android’s "Installing the Eclipse Plugin" page at

http://developer.android.com/sdk/installing/installing-adt.html. From there you can download

the Android Developer Tools (ADT) Plugin. Follow the installation instructions found there.

The instructions below have been changed over time for different versions, most recently for Eclipse

4.2 (Juno) and ADT 22.2, and you may find differences in the version you have installed. Please visit

the BASIC! users’ forum at http://rfobasic.freeforums.org to report any problems you find.

4. BASIC! supports most versions of Android, which can lead to spurious build errors. You may

need to change API level checking from Error to Warning:

a. Select Window->Preferences->Android->Lint Error Checking

b. Find NewApi and click on it.

c. In the dropdown list, change the Severity from Error to Warning.

d. Click Apply

Download the BASIC! Source Code from the GitHub Repository

1. Go to: https://github.com/RFO-BASIC/Basic.

2. Find the branch/tag selection button: Click the button and the

"Tags" tab to select the tagged release version you want. If you do not select a tag, you will get

the source for the latest development build. The latest development source is not guaranteed to

be stable.

3. Click the "Download ZIP" button: found on the right side of the page. The

name of the downloaded ZIP file depends on which tag you selected in the previous step.

4. Put the unzipped source files into a folder. For this exercise, name the folder "Cats". You should

use a different folder for each new APK that you create.

– OR –

Download the BASIC! Source Code from the Legacy Archive

1. Go to: http://laughton.com/basic/versions/index.html and select the version number you want.

For versions later than v01.77, you must download the source from GitHub.

2. Look for the section heading, "Download BASIC! Source Code." Click on the "here" to download

"Basic.zip".

https://eclipse.org/downloads/
https://eclipse.org/kepler/
https://eclipse.org/juno/
http://developer.android.com/sdk/installing/installing-adt.html
http://rfobasic.freeforums.org/
https://github.com/RFO-BASIC/Basic
http://laughton.com/basic/versions/index.html

Original Author Paul Laughton, 2011 Page 212 De Re BASIC!

3. Older versions of this file contain only the BASIC! source code. More recent versions also contain

a copy of the Android-loadable Basic.apk file and a copy of this manual.

4. Put the unzipped source files into a folder. For this exercise, name the folder "Cats". You should

use a different folder for each new APK that you create.

Note: In the remainder of this tutorial, we assume our application is about cats, thus we are using

the name "Cats". For your own APK, you should choose a name that matches your application.

Create a New Project in Eclipse

Note: to simplify later steps, turn off the automatic build feature of Eclipse before creating the new

project:

1. On the menu, click Project.

2. Uncheck Build Automatically.

Now you can create the project.

3. Select: File -> New -> Project…->Android->Android Project from Existing Code.

4. In the Import Projects dialog box, browse to the folder where you put the BASIC! source files.

5. Under Projects to Import, click the project you are importing. Make sure it is checked.

6. Under New Project Name, change the project name from "Basic" to "Cats". Click Finish.

7. In the Package Explorer window on the left, right-click on Cats and select Properties (near the

bottom of the list).

8. In the Properties dialog box, select Android:

9. Check the highest level of the Android OS available in this list. Do this without regard to the level

of OS in your device(s). (Note for KitKat users: BASIC! is currently compiled with API 18. The

build works with higher levels, but you may choose to limit the OS level to 4.3, API 18.)

10. Click Apply then OK.

The Basic source is now ready for making an APK.

Original Author Paul Laughton, 2011 Page 213 De Re BASIC!

Rename the Package

The package name is what makes your application different from every other application that runs on

Android devices. No matter what you name your application, it is the package name that Android uses

to identify your particular application.

In Eclipse

First, use the search-and-replace dialog to update references to the package name.

1. From the Menu Bar, select: Search->File.

2. Fill in the dialog like this:

3. Click Replace. The Replace Text Matches Dialog Box opens.

4. Enter "com.rfo.cats" in the With: field, and click OK.

Next, tell Eclipse about the package change.

5. In the Package Explorer, click and open the Cats -> src hierarchy as shown below.

6. Select the com.rfo.basic package.

7. From the Menu Bar, select File->Rename to open the Rename Package dialog.

8. In the New name: field, enter "com.rfo.cats".

Original Author Paul Laughton, 2011 Page 214 De Re BASIC!

9. Make sure the Update references box is checked and click OK.

Your project is ready to build. Restore the automatic build feature of Eclipse:

10. Click Project->Build Automatically. Make sure the checkmark appears.

The project should build without errors.

Other IDEs

Most changes in this Appendix are simply changes in source files, and so they apply to any IDE. Editing

the package name is a more complex. Eclipse hides some of the complexity, but it also requires special

actions when renaming the package so the IDE knows about the change. A different IDE, it may have its

own requirements.

This section will describe all of the changes necessary to rename the package. Your IDE may do them, or

you may have to do them yourself with a text editor. Some editors can do global search-and-replace

across an entire file tree, which can save you a lot of work.

1. The package name is also a path name. If all of your source files are in a directory called "src",

and your package name is "com.rfo.basic", then your source files are really in a directory

called src/com/rfo/basic. If you change the package, for example, to "com.rfo.cats", then

you must also move all of the source files to the new directory, in this case src/com/rfo/cats.

2. Everywhere it occurs, the string "com.rfo.basic" must be changed to your new package name.

a. The Android manifest file (AndroidManifest.xml) contains the line

package="com.rfo.basic"

If you have a bin directory in your project, it may contain a copy of the manifest file. It

was generated by the Eclipse build process. You may ignore it or delete it.

b. Two layout files, res/layout/editor.xml and res/layout/console.xml, contain

class attributes:

class="com.rfo.basic.Editor$LinedEditText"

class="com.rfo.basic.Run$ConsoleListView"

c. Every .java file in the source directory (*.java) contains the line

package com.rfo.basic;

Original Author Paul Laughton, 2011 Page 215 De Re BASIC!

d. Several .java files (currently 7) files contain a line that starts like one of these:

import com.rfo.basic.

import static com.rfo.basic.

Some files have more than one such line.

e. Two files, Editor.java and LauncherShortcuts.java, contain one of these strings:
public static final String EXTRA_LS_FILENAME = "com.rfo.basic.fn";

public static final String EXTRA_LS_FILENAME = "com.rfo.basic.doRestart";

You may safely ignore these, since they are not used in a standalone APK. However, it

does not hurt to change these instances of com.rfo.basic along with all the others.

Renaming complete

At this point the package has been successfully renamed. Next we will create a practice APK that you

then use to make your own APK.

Modifications to setup.xml

You can customize your apk with settings in the resource file setup.xml. Some changes are required for

any apk.

In the Package Explorer, expand Cats/res/values and then double-click setup.xml. The file opens in the

window on the right. There are tabs at the bottom of the window that let you change how the file is

displayed. If the Resources tab is selected, you see a special Eclipse Resource Editor. This editor does not

know how to modify all of the properties in this file. Click on the setup.xml tab to display the actual XML

text, as shown in the image below. In this view, you can also see the comments describing the values

you can change for your application.

Be sure you change only values, not names. Names are shown as blue text in quotes. Values are shown

as black text with no quotation marks. If you change a name, Java can not find the item to get its value.

Change the value of "app_name" from BASIC! to Cats!. This is the name of the application as it will

appear on your Android device.

Change the value of "app_path" to rfo-cats. This will be the directory on the SD card where your files

are stored, if you choose to have a directory for files for your application. Make this change even if you

do not choose to create directories for your application. It has implications in other parts of the code.

Change the value of "is_apk" to true.

The items "apk_create_data_dir" and "apk_create_database_dir" are flags that control whether

directories are created under "app_path" for your application’s files. Since this practice application does

not need any directories, change the values of both to false.

The item "load_file_names" is a list of files that you want loaded to the SD card. This practice

application uses the sound clip meow.wav. Running under standard BASIC!, the program would use the

file rfo-basic/data/meow.wav. As a standalone application, it can use a file image built into APK. Since

the practice application is not using a real file, you can leave the "load_file_names" list empty.

Original Author Paul Laughton, 2011 Page 216 De Re BASIC!

Save the changes to setup.xml.

Note: If you do want to load files to the SD card, you must allow the creation of the data directory (set

"apk_create_data_dir" to true) and put the file names in the "load_file_names" list like this:

The files will be loaded from the assets folder. This will be explained in the next sections.

At this point, you have modified the source files of the BASIC! interpreter so it can be packaged into a

standalone application. You can build and run it, if you like, but it will display a blank Console. That’s

result you get when you build BASIC! into an application but you don’t give it a program to run.

Advanced Customization with setup.xml

The setup.xml file allows more customization than the minimum required for Cats.

The VERSION$() function gets its value from the item named "version". If your application uses

VERSION$(), this is where you set the value you want it to return.

The item "my_program" is the name of the BASIC! program you want your application to run. This will

be explained in the next section.

Original Author Paul Laughton, 2011 Page 217 De Re BASIC!

If the .bas program files in the source subdirectory of your assets are encrypted, you must set the item

"apk_programs_encrypted" to true. This tells BASIC! that it must decrypt programs as it loads them.

The item "run_name" is the default title of the Console. Your program can set the Console title, but you

may want to change the default title here. Similarly, "select_name" and "textinput_name" set the

names of the screens for the Select, Text.Input, and TGet commands.

If your app uses Console output, you can set the text colors here. The mapping of "color1", "color2",

and "color3" to text foreground, background, and underline depend on your Screen Colors setting

under Preferences.

As mentioned earlier, the "load_file_names" is a list of files that you want loaded to the SD card. Any

files listed here will be copied from the assets directory to the SD card every time your app starts. This

may be the internal Android file system or a file system mounted on an external SD card. After that, your

app will access the files from the SD card file system, not from assets. Any changes your program makes

to these files will be overwritten the next time the app starts. To preserve changes, your program must

copy or rename the file. The copied/renamed file will not be overwritten when your program runs again.

Several items in setup.xml control the splash screen and file-load progress indicator. If you don’t change

anything, your Cats app will display the default BASIC! splash screen briefly. You may not see it because

the apk does not load any files.

You can turn off the splash screen by setting "splash_display" to false.

The splash screen image is the resource file res/drawable/splash.png. To customize the splash screen,

replace this file in your project with an image of your own. Your image file must be named splash.jpg.

If you do not use a splash screen, you may remove this file from your project to make your apk a little

smaller. Do not remove the file res/drawable/blank.jpg.

You can also customize the file-load progress indicator. Progress is shown in a pop-up over the splash

screen. The title comes from the string "loading_msg".Each increment of progress is a copy of the string

"progress_marker ". The default string is a single period (.).

You can turn off the progress indicator by making the "loading_msg" an empty string.

The setup.xml file is intended to collect the fields you are most likely to want to change all in one place.

There are many other strings and values that can be set to customize your app. Another file with fields

you may find interesting is strings.xml, where default values of many strings are set. For example, you

can change the default title string for the Speech-to-Text dialog by editing the string named sst_prompt.

Later, we will describe how to change the default values of Preference options in the file settings.xml.

Original Author Paul Laughton, 2011 Page 218 De Re BASIC!

Files and Resources

Standard BASIC! loads its sample programs and the data files they need from the assets folder of the

Eclipse project. Android treats the assets folder like a file system. At startup, BASIC! simply copies the

entire assets/rfo-basic folder to the SD card.

Your application can use the assets folder, too. Most of the BASIC! file-handling commands look in the

SD card file system first. If the file does not exist on the SD card, your program compiled into an APK can

look for the file in assets. FILE.EXISTS looks only for files on the SD card, but FILE.TYPE works with items

in assets as well. You can use them together to determine where an item is.

Files in assets are read-only. Your program can create and modify files on the SD card. It cannot create

or modify files in assets. If you want BASIC! to copy files from assets to the SD card, list them the

"load_file_names" tag of setup.xml as described above in "Advanced Customization with setup.xml".

File names in assets are case-sensitive. If your program looks for a file on the SD card, the name is not

case-sensitive: "meow.wav" and "Meow.WAV" are the same file. However, to find a file in assets, your

program must name the file exactly as you put it in assets. AUDIO.LOAD aft, "meow.wav" will not find

assets/rfo-cats/data/Meow.WAV.

For this practice APK, make the following changes:

1. In the Package Explorer, expand Cats/assets/rfo-basic and its data and source folders.

2. Right-click assets and select New -> Folder.

3. In the Folder name: field, enter "rfo-cats/data".

4. Click Finish.

5. In the same way, create "rfo-cats/source".

6. Drag assets/rfo-basic/data/meow.wav to assets/rfo-cats/data/.

7. Drag assets/rfo-basic/source/my_program.bas to assets/rfo-cats/source/.

Note: the top folder in assets must exactly match what you put in the "app_path" item in

res/values/setup.xml. For this practice program, it is rfo-cats.

If you expand your new folders, your Package Explorer should look like this:

Original Author Paul Laughton, 2011 Page 219 De Re BASIC!

Your APK does not need anything in assets/rfo-basic. Delete the entire folder:

8. In the Package Explorer, right-click Cats/assets/rfo-basic and select Delete.

9. In the confirmation window that appears, click OK.

10. You are done making changes! It wouldn’t hurt to do a Project->Clean here.

Testing the APK

We are now ready to test this practice APK.

The first thing you will do is to create a Keystore. The Keystore is used to sign your application. Google

Play requires this signing. Android devices will not install unsigned APKs. You will use this one Keystore

for all your APKs. Preserve and protect it. You will not be able to update your APK without it.

For more information about the Keystore and signing, see:

http://developer.android.com/tools/publishing/app-signing.html

1. In the Package Explorer, right-click Cats.

2. Select: Android Tools -> Export Signed Application Package.

3. In the Project Checks dialog box click Next.

4. Select Create New Keystore.

a. Provide a name and location for the Keystore.

b. Provide a password and confirm it.

c. Click Next.

5. Fill out the Key Creation dialog.

a. Pick any name for an Alias.

http://developer.android.com/tools/publishing/app-signing.html

Original Author Paul Laughton, 2011 Page 220 De Re BASIC!

b. Enter 25 for Validity (Years).

c. Click next.

6. In the Destination and Key/Certificate Checks dialog,

a. Browse to the folder where you want to put the APK.

b. Name the APK "Cats.apk".

c. Click next.

7. Now, install and run Cats.apk.

The APK will have the BASIC! icon. The name below the icon on your device will be "Cats!". Double click

the icon to run your application.

If you have reached this point successfully then you are ready to customize the APK for your application.

Start over with a new copy of Basic.zip but use names and information particular to your application and

then continue below.

Installing a BASIC! Program into the Application

You must build your BASIC! program into your application my putting it into the assets folder, just as

you saw in the practice program. One very simple way is to copy your text into assets/<your-

app>/my_program.bas. <your-app> is the path you named in the setup.xml item "app_path".

1. In the Eclipse Package Explorer, expand the assets folder.

2. Double-click assets/<your-app>/source/my_program.bas.

3. The file will open in the edit window to the right:

Now you can edit the file directly in Eclipse. If you prefer, you can open your program outside of Eclipse,

copy its contents to the clipboard, and paste it into the Eclipse editor. When you are finished, select File-

>Save from the menu bar, or just close the file by clicking the X on the file tab and Yes in the

Save Resource dialog box.

Original Author Paul Laughton, 2011 Page 221 De Re BASIC!

For more complex projects, here is another way to do it.

1. In the Eclipse Package Explorer, expand your program’s assets folder.

2. If you have a my_program.bas in your assets folder, delete it.

3. In a file browser, browse to the file containing your program.

4. Drag your program from your file browser to your assets/<your-app>/source folder in Eclipse.

5. If your program uses INCLUDE files, drag them to the source folder, too.

With either method, you now have a program to run. If your program uses graphics, audio files, or other

resources, you must put them in your Android assets folder, too.

If your program uses data files, drag them to your assets/<your-app>/data folder.

If your program uses data base files with the ".db" extension, create a new folder for them called

assets/<your-app>/databases and drag your file into the new folder.

The result might look something like this:

Notice that the top folder in assets matches the "app_path" value, and there is a program in its source

folder named the same as the "my_program" value.

Application Icons

Android specifies that Application icons must be provided in specific sizes: low dpi (36x36 pixels),

medium dpi (48x48 pixels), high dpi (72x72), x-high dpi (96x96), and so on. The icons must be .png files.

There are tens of thousands of free icons available on the web. Most image editing programs can be

Original Author Paul Laughton, 2011 Page 222 De Re BASIC!

used to re-sample the icons to the proper sizes and to save them as .png files. If you are not going to put

your application on the Google Play Store then you do not really need to worry about getting this exactly

right.

To get your icon into your application, in res, open drawable-ldpi, drawable-mdpi, drawable-hdpi.

For each of the icon sizes:

1. Outside of Eclipse, copy the icon file

2. In Eclipse, right click on the appropriate drawable- for the copied icon's size

3. Select Paste

4. Right click on the icon.png file and delete it

5. Select the newly pasted icon and rename it to "icon.png" by selecting File -> Rename.

Yes, it is tedious work.

Modifications to the AndroidManifest.xml File

The AndroidManifest.xml file defines many aspects of how your application is built, and how it is

presented to the Android system. For example, when you changed the package name, Eclipse wrote the

change into the Android manifest.

You can build and run your application with no further changes to AndroidManifest.xml. However, the

manifest carries information that your application may not need. You should customize it to suit your

application.

In the Package Explorer, find the AndroidManifest.xml file. Double-click to open it:

Original Author Paul Laughton, 2011 Page 223 De Re BASIC!

Eclipse has special editors to display different views of the Manifest. If you don’t see the actual XML text

as shown here, click on the rightmost tab at the bottom of the window, labeled AndroidManifest.xml.

Setting the Version Number and Version Name

If you are going to put the application on the Google Play Store, you will need to change the version

number and name for each new release.

Make the appropriate changes to the android:versionCode and android:versionName items of the

<manifest> tag at the top of AndroidManifest.xml.

If you want to use the BASIC! VERSION$() function to have your program read your version number, you

will also have to change the version number in res->values->strings.

Permissions

BASIC! uses many features about which the APK user is warned and must approve. Your particular APK

may not need all or any of these permissions. The permission notifications are contained in the <uses-

permission> tags of the AndroidManiest.xml. They look like this:

<uses-permission android:name=" android.permission. … " />

Look them over. If you feel that your APK does not need them then delete or comment them out.

If your application uses the SD card, do not comment out:

<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

If you want your application to run when the device boots (see "Launch at device boot", below), do not

comment out:

<uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED" />

Be sure to test your APK after changing permissions.

Disable the Shortcut Launcher

Each Activity screen that BASIC! can present to a user is declared in an <activity> tag in the

AndroidManifest.xml file. Your application may not use every Activity BASIC! offers. You may remove

the unsed <activity> tags if you wish, but they don’t hurt anything if you leave them in.

However, the <activity> tags also tell the Android system what events should start your application. You

probably do not want your application to respond to these two events:

1) A user can launch BASIC! by tapping a file with a ".bas" extension

2) A user can use the Shortcut Launcher to create a shortcut for a BASIC! program

You remove these by deleting their tags from the Manifest:

1) Find the <activity> tag that contains android:name="Basic".

Original Author Paul Laughton, 2011 Page 224 De Re BASIC!

a) In it, find the <intent-filter> tag that contains <data android:pathPattern=".*\\.bas" />.

b) Remove all of the <intent-filter> tag, from <intent-filter> to </intent_filter>.

Do not remove the <activity> tag.

2) There are two shortcut tags:

a) Find and remove the <activity> tag that contains android:name="LauncherShortcuts".

b) Find and remove the <activity-alias> tag that contains android:name="CreateShortcuts".

Launch at device boot

Your APK can be set up to automatically launch just after the Android device has booted. This is

accomplished by changing another item in AndroidManifest.xml.

Find the <receiver> tag with android:name=".BootUpReceiver".

Change android:enabled="false" to android:enabled="true".

Original Author Paul Laughton, 2011 Page 225 De Re BASIC!

You must also make sure your app has "RECEIVE_BOOT_COMPLETED" permission. See the "Permissions"

section, above.

Preferences

There are certain preferences such as screen colors and font sizes that you have set for your application.

The preferences that you will get with an APK will be BASIC!’s default preferences. You can change the

default preferences if you wish.

Some preferences are simple check boxes. To change these, open the res/xml hierarchy and double click

on the settings.xml file as shown below:

For example, to change the default Console Lines preference from lined console to unlined console,

change the value on the indicated line from "true" to "false".

If your app uses graphics mode, and you have determined it works correctly with hardware-accelerated

graphics, you may want to change the default setting of the CheckBoxPreference named "gr_accel". The

default is normally "false", but to enable graphics acceleration in an APK you must change it to "true".

Other preferences are multiple-choice lists. To see the list values, open the res/values hierarchy and

double click on arrays.xml. Each preference has two blocks. The top block lists the words that will be

seen on the Android screen. The second block lists the internal names that correspond to the displayed

words.

In the image below:

Original Author Paul Laughton, 2011 Page 226 De Re BASIC!

The section marked contains the names and values for the Screen Orientation preference. The top block

is the display names. The bottom block is the internal values that correspond to the display name. For

example the internal value of Fixed Reverse Landscape is 2.

To set a default value for Screen Orientation, we need to go back to settings.xml:

Find the <ListPreference> tag with android:title"="Screen Orientation". The title is the preference

name that you see on the Android screen. The default value is in the android:defaultValue ="0" line.

Here we see the default value for the screen orientation is "0". Looking at the Array.xml file we can see

the "0" is the internal name for Variable By Sensors. To change the default value to Fixed Reverse

Landscape, change the "0" to "2".

The other list preferences follow the same logic.

Note: Be sure to test your application with your chosen preferences before burning them into an APK.

Finished

Create your finished APK in the same way we created the practice APK.

Now that was not too bad, was it?

Original Author Paul Laughton, 2011 Page 227 De Re BASIC!

Appendix E – BASIC! Distribution License

BASIC! is distributed under the terms of the GNU General Public License which is reproduced here.

--

GNU GENERAL PUBLIC LICENSE

 Version 3, 29 June 2007

 Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>

 Everyone is permitted to copy and distribute verbatim copies

 of this license document, but changing it is not allowed.

 Preamble

 The GNU General Public License is a free, copyleft license for

software and other kinds of works.

 The licenses for most software and other practical works are designed

to take away your freedom to share and change the works. By contrast,

the GNU General Public License is intended to guarantee your freedom to

share and change all versions of a program--to make sure it remains free

software for all its users. We, the Free Software Foundation, use the

GNU General Public License for most of our software; it applies also to

any other work released this way by its authors. You can apply it to

your programs, too.

 When we speak of free software, we are referring to freedom, not

price. Our General Public Licenses are designed to make sure that you

have the freedom to distribute copies of free software (and charge for

them if you wish), that you receive source code or can get it if you

want it, that you can change the software or use pieces of it in new

free programs, and that you know you can do these things.

 To protect your rights, we need to prevent others from denying you

these rights or asking you to surrender the rights. Therefore, you have

certain responsibilities if you distribute copies of the software, or if

you modify it: responsibilities to respect the freedom of others.

 For example, if you distribute copies of such a program, whether

gratis or for a fee, you must pass on to the recipients the same

freedoms that you received. You must make sure that they, too, receive

or can get the source code. And you must show them these terms so they

know their rights.

 Developers that use the GNU GPL protect your rights with two steps:

(1) assert copyright on the software, and (2) offer you this License

giving you legal permission to copy, distribute and/or modify it.

 For the developers' and authors' protection, the GPL clearly explains

that there is no warranty for this free software. For both users' and

authors' sake, the GPL requires that modified versions be marked as

changed, so that their problems will not be attributed erroneously to

authors of previous versions.

 Some devices are designed to deny users access to install or run

modified versions of the software inside them, although the manufacturer

Original Author Paul Laughton, 2011 Page 228 De Re BASIC!

can do so. This is fundamentally incompatible with the aim of

protecting users' freedom to change the software. The systematic

pattern of such abuse occurs in the area of products for individuals to

use, which is precisely where it is most unacceptable. Therefore, we

have designed this version of the GPL to prohibit the practice for those

products. If such problems arise substantially in other domains, we

stand ready to extend this provision to those domains in future versions

of the GPL, as needed to protect the freedom of users.

 Finally, every program is threatened constantly by software patents.

States should not allow patents to restrict development and use of

software on general-purpose computers, but in those that do, we wish to

avoid the special danger that patents applied to a free program could

make it effectively proprietary. To prevent this, the GPL assures that

patents cannot be used to render the program non-free.

 The precise terms and conditions for copying, distribution and

modification follow.

 TERMS AND CONDITIONS

 0. Definitions.

 "This License" refers to version 3 of the GNU General Public License.

 "Copyright" also means copyright-like laws that apply to other kinds of

works, such as semiconductor masks.

 "The Program" refers to any copyrightable work licensed under this

License. Each licensee is addressed as "you". "Licensees" and

"recipients" may be individuals or organizations.

 To "modify" a work means to copy from or adapt all or part of the work

in a fashion requiring copyright permission, other than the making of an

exact copy. The resulting work is called a "modified version" of the

earlier work or a work "based on" the earlier work.

 A "covered work" means either the unmodified Program or a work based

on the Program.

 To "propagate" a work means to do anything with it that, without

permission, would make you directly or secondarily liable for

infringement under applicable copyright law, except executing it on a

computer or modifying a private copy. Propagation includes copying,

distribution (with or without modification), making available to the

public, and in some countries other activities as well.

 To "convey" a work means any kind of propagation that enables other

parties to make or receive copies. Mere interaction with a user through

a computer network, with no transfer of a copy, is not conveying.

 An interactive user interface displays "Appropriate Legal Notices"

to the extent that it includes a convenient and prominently visible

feature that (1) displays an appropriate copyright notice, and (2)

tells the user that there is no warranty for the work (except to the

extent that warranties are provided), that licensees may convey the

work under this License, and how to view a copy of this License. If

Original Author Paul Laughton, 2011 Page 229 De Re BASIC!

the interface presents a list of user commands or options, such as a

menu, a prominent item in the list meets this criterion.

 1. Source Code.

 The "source code" for a work means the preferred form of the work

for making modifications to it. "Object code" means any non-source

form of a work.

 A "Standard Interface" means an interface that either is an official

standard defined by a recognized standards body, or, in the case of

interfaces specified for a particular programming language, one that

is widely used among developers working in that language.

 The "System Libraries" of an executable work include anything, other

than the work as a whole, that (a) is included in the normal form of

packaging a Major Component, but which is not part of that Major

Component, and (b) serves only to enable use of the work with that

Major Component, or to implement a Standard Interface for which an

implementation is available to the public in source code form. A

"Major Component", in this context, means a major essential component

(kernel, window system, and so on) of the specific operating system

(if any) on which the executable work runs, or a compiler used to

produce the work, or an object code interpreter used to run it.

 The "Corresponding Source" for a work in object code form means all

the source code needed to generate, install, and (for an executable

work) run the object code and to modify the work, including scripts to

control those activities. However, it does not include the work's

System Libraries, or general-purpose tools or generally available free

programs which are used unmodified in performing those activities but

which are not part of the work. For example, Corresponding Source

includes interface definition files associated with source files for

the work, and the source code for shared libraries and dynamically

linked subprograms that the work is specifically designed to require,

such as by intimate data communication or control flow between those

subprograms and other parts of the work.

 The Corresponding Source need not include anything that users

can regenerate automatically from other parts of the Corresponding

Source.

 The Corresponding Source for a work in source code form is that

same work.

 2. Basic Permissions.

 All rights granted under this License are granted for the term of

copyright on the Program, and are irrevocable provided the stated

conditions are met. This License explicitly affirms your unlimited

permission to run the unmodified Program. The output from running a

covered work is covered by this License only if the output, given its

content, constitutes a covered work. This License acknowledges your

rights of fair use or other equivalent, as provided by copyright law.

 You may make, run and propagate covered works that you do not

convey, without conditions so long as your license otherwise remains

Original Author Paul Laughton, 2011 Page 230 De Re BASIC!

in force. You may convey covered works to others for the sole purpose

of having them make modifications exclusively for you, or provide you

with facilities for running those works, provided that you comply with

the terms of this License in conveying all material for which you do

not control copyright. Those thus making or running the covered works

for you must do so exclusively on your behalf, under your direction

and control, on terms that prohibit them from making any copies of

your copyrighted material outside their relationship with you.

 Conveying under any other circumstances is permitted solely under

the conditions stated below. Sublicensing is not allowed; section 10

makes it unnecessary.

 3. Protecting Users' Legal Rights From Anti-Circumvention Law.

 No covered work shall be deemed part of an effective technological

measure under any applicable law fulfilling obligations under article

11 of the WIPO copyright treaty adopted on 20 December 1996, or

similar laws prohibiting or restricting circumvention of such

measures.

 When you convey a covered work, you waive any legal power to forbid

circumvention of technological measures to the extent such circumvention

is effected by exercising rights under this License with respect to

the covered work, and you disclaim any intention to limit operation or

modification of the work as a means of enforcing, against the work's

users, your or third parties' legal rights to forbid circumvention of

technological measures.

 4. Conveying Verbatim Copies.

 You may convey verbatim copies of the Program's source code as you

receive it, in any medium, provided that you conspicuously and

appropriately publish on each copy an appropriate copyright notice;

keep intact all notices stating that this License and any

non-permissive terms added in accord with section 7 apply to the code;

keep intact all notices of the absence of any warranty; and give all

recipients a copy of this License along with the Program.

 You may charge any price or no price for each copy that you convey,

and you may offer support or warranty protection for a fee.

 5. Conveying Modified Source Versions.

 You may convey a work based on the Program, or the modifications to

produce it from the Program, in the form of source code under the

terms of section 4, provided that you also meet all of these conditions:

 a) The work must carry prominent notices stating that you modified

 it, and giving a relevant date.

 b) The work must carry prominent notices stating that it is

 released under this License and any conditions added under section

 7. This requirement modifies the requirement in section 4 to

 "keep intact all notices".

 c) You must license the entire work, as a whole, under this

Original Author Paul Laughton, 2011 Page 231 De Re BASIC!

 License to anyone who comes into possession of a copy. This

 License will therefore apply, along with any applicable section 7

 additional terms, to the whole of the work, and all its parts,

 regardless of how they are packaged. This License gives no

 permission to license the work in any other way, but it does not

 invalidate such permission if you have separately received it.

 d) If the work has interactive user interfaces, each must display

 Appropriate Legal Notices; however, if the Program has interactive

 interfaces that do not display Appropriate Legal Notices, your

 work need not make them do so.

 A compilation of a covered work with other separate and independent

works, which are not by their nature extensions of the covered work,

and which are not combined with it such as to form a larger program,

in or on a volume of a storage or distribution medium, is called an

"aggregate" if the compilation and its resulting copyright are not

used to limit the access or legal rights of the compilation's users

beyond what the individual works permit. Inclusion of a covered work

in an aggregate does not cause this License to apply to the other

parts of the aggregate.

 6. Conveying Non-Source Forms.

 You may convey a covered work in object code form under the terms

of sections 4 and 5, provided that you also convey the

machine-readable Corresponding Source under the terms of this License,

in one of these ways:

 a) Convey the object code in, or embodied in, a physical product

 (including a physical distribution medium), accompanied by the

 Corresponding Source fixed on a durable physical medium

 customarily used for software interchange.

 b) Convey the object code in, or embodied in, a physical product

 (including a physical distribution medium), accompanied by a

 written offer, valid for at least three years and valid for as

 long as you offer spare parts or customer support for that product

 model, to give anyone who possesses the object code either (1) a

 copy of the Corresponding Source for all the software in the

 product that is covered by this License, on a durable physical

 medium customarily used for software interchange, for a price no

 more than your reasonable cost of physically performing this

 conveying of source, or (2) access to copy the

 Corresponding Source from a network server at no charge.

 c) Convey individual copies of the object code with a copy of the

 written offer to provide the Corresponding Source. This

 alternative is allowed only occasionally and noncommercially, and

 only if you received the object code with such an offer, in accord

 with subsection 6b.

 d) Convey the object code by offering access from a designated

 place (gratis or for a charge), and offer equivalent access to the

 Corresponding Source in the same way through the same place at no

 further charge. You need not require recipients to copy the

 Corresponding Source along with the object code. If the place to

Original Author Paul Laughton, 2011 Page 232 De Re BASIC!

 copy the object code is a network server, the Corresponding Source

 may be on a different server (operated by you or a third party)

 that supports equivalent copying facilities, provided you maintain

 clear directions next to the object code saying where to find the

 Corresponding Source. Regardless of what server hosts the

 Corresponding Source, you remain obligated to ensure that it is

 available for as long as needed to satisfy these requirements.

 e) Convey the object code using peer-to-peer transmission, provided

 you inform other peers where the object code and Corresponding

 Source of the work are being offered to the general public at no

 charge under subsection 6d.

 A separable portion of the object code, whose source code is excluded

from the Corresponding Source as a System Library, need not be

included in conveying the object code work.

 A "User Product" is either (1) a "consumer product", which means any

tangible personal property which is normally used for personal, family,

or household purposes, or (2) anything designed or sold for incorporation

into a dwelling. In determining whether a product is a consumer product,

doubtful cases shall be resolved in favor of coverage. For a particular

product received by a particular user, "normally used" refers to a

typical or common use of that class of product, regardless of the status

of the particular user or of the way in which the particular user

actually uses, or expects or is expected to use, the product. A product

is a consumer product regardless of whether the product has substantial

commercial, industrial or non-consumer uses, unless such uses represent

the only significant mode of use of the product.

 "Installation Information" for a User Product means any methods,

procedures, authorization keys, or other information required to install

and execute modified versions of a covered work in that User Product from

a modified version of its Corresponding Source. The information must

suffice to ensure that the continued functioning of the modified object

code is in no case prevented or interfered with solely because

modification has been made.

 If you convey an object code work under this section in, or with, or

specifically for use in, a User Product, and the conveying occurs as

part of a transaction in which the right of possession and use of the

User Product is transferred to the recipient in perpetuity or for a

fixed term (regardless of how the transaction is characterized), the

Corresponding Source conveyed under this section must be accompanied

by the Installation Information. But this requirement does not apply

if neither you nor any third party retains the ability to install

modified object code on the User Product (for example, the work has

been installed in ROM).

 The requirement to provide Installation Information does not include a

requirement to continue to provide support service, warranty, or updates

for a work that has been modified or installed by the recipient, or for

the User Product in which it has been modified or installed. Access to a

network may be denied when the modification itself materially and

adversely affects the operation of the network or violates the rules and

protocols for communication across the network.

Original Author Paul Laughton, 2011 Page 233 De Re BASIC!

 Corresponding Source conveyed, and Installation Information provided,

in accord with this section must be in a format that is publicly

documented (and with an implementation available to the public in

source code form), and must require no special password or key for

unpacking, reading or copying.

 7. Additional Terms.

 "Additional permissions" are terms that supplement the terms of this

License by making exceptions from one or more of its conditions.

Additional permissions that are applicable to the entire Program shall

be treated as though they were included in this License, to the extent

that they are valid under applicable law. If additional permissions

apply only to part of the Program, that part may be used separately

under those permissions, but the entire Program remains governed by

this License without regard to the additional permissions.

 When you convey a copy of a covered work, you may at your option

remove any additional permissions from that copy, or from any part of

it. (Additional permissions may be written to require their own

removal in certain cases when you modify the work.) You may place

additional permissions on material, added by you to a covered work,

for which you have or can give appropriate copyright permission.

 Notwithstanding any other provision of this License, for material you

add to a covered work, you may (if authorized by the copyright holders of

that material) supplement the terms of this License with terms:

 a) Disclaiming warranty or limiting liability differently from the

 terms of sections 15 and 16 of this License; or

 b) Requiring preservation of specified reasonable legal notices or

 author attributions in that material or in the Appropriate Legal

 Notices displayed by works containing it; or

 c) Prohibiting misrepresentation of the origin of that material, or

 requiring that modified versions of such material be marked in

 reasonable ways as different from the original version; or

 d) Limiting the use for publicity purposes of names of licensors or

 authors of the material; or

 e) Declining to grant rights under trademark law for use of some

 trade names, trademarks, or service marks; or

 f) Requiring indemnification of licensors and authors of that

 material by anyone who conveys the material (or modified versions of

 it) with contractual assumptions of liability to the recipient, for

 any liability that these contractual assumptions directly impose on

 those licensors and authors.

 All other non-permissive additional terms are considered "further

restrictions" within the meaning of section 10. If the Program as you

received it, or any part of it, contains a notice stating that it is

governed by this License along with a term that is a further

restriction, you may remove that term. If a license document contains

a further restriction but permits relicensing or conveying under this

Original Author Paul Laughton, 2011 Page 234 De Re BASIC!

License, you may add to a covered work material governed by the terms

of that license document, provided that the further restriction does

not survive such relicensing or conveying.

 If you add terms to a covered work in accord with this section, you

must place, in the relevant source files, a statement of the

additional terms that apply to those files, or a notice indicating

where to find the applicable terms.

 Additional terms, permissive or non-permissive, may be stated in the

form of a separately written license, or stated as exceptions;

the above requirements apply either way.

 8. Termination.

 You may not propagate or modify a covered work except as expressly

provided under this License. Any attempt otherwise to propagate or

modify it is void, and will automatically terminate your rights under

this License (including any patent licenses granted under the third

paragraph of section 11).

 However, if you cease all violation of this License, then your

license from a particular copyright holder is reinstated (a)

provisionally, unless and until the copyright holder explicitly and

finally terminates your license, and (b) permanently, if the copyright

holder fails to notify you of the violation by some reasonable means

prior to 60 days after the cessation.

 Moreover, your license from a particular copyright holder is

reinstated permanently if the copyright holder notifies you of the

violation by some reasonable means, this is the first time you have

received notice of violation of this License (for any work) from that

copyright holder, and you cure the violation prior to 30 days after

your receipt of the notice.

 Termination of your rights under this section does not terminate the

licenses of parties who have received copies or rights from you under

this License. If your rights have been terminated and not permanently

reinstated, you do not qualify to receive new licenses for the same

material under section 10.

 9. Acceptance Not Required for Having Copies.

 You are not required to accept this License in order to receive or

run a copy of the Program. Ancillary propagation of a covered work

occurring solely as a consequence of using peer-to-peer transmission

to receive a copy likewise does not require acceptance. However,

nothing other than this License grants you permission to propagate or

modify any covered work. These actions infringe copyright if you do

not accept this License. Therefore, by modifying or propagating a

covered work, you indicate your acceptance of this License to do so.

 10. Automatic Licensing of Downstream Recipients.

 Each time you convey a covered work, the recipient automatically

receives a license from the original licensors, to run, modify and

propagate that work, subject to this License. You are not responsible

Original Author Paul Laughton, 2011 Page 235 De Re BASIC!

for enforcing compliance by third parties with this License.

 An "entity transaction" is a transaction transferring control of an

organization, or substantially all assets of one, or subdividing an

organization, or merging organizations. If propagation of a covered

work results from an entity transaction, each party to that

transaction who receives a copy of the work also receives whatever

licenses to the work the party's predecessor in interest had or could

give under the previous paragraph, plus a right to possession of the

Corresponding Source of the work from the predecessor in interest, if

the predecessor has it or can get it with reasonable efforts.

 You may not impose any further restrictions on the exercise of the

rights granted or affirmed under this License. For example, you may

not impose a license fee, royalty, or other charge for exercise of

rights granted under this License, and you may not initiate litigation

(including a cross-claim or counterclaim in a lawsuit) alleging that

any patent claim is infringed by making, using, selling, offering for

sale, or importing the Program or any portion of it.

 11. Patents.

 A "contributor" is a copyright holder who authorizes use under this

License of the Program or a work on which the Program is based. The

work thus licensed is called the contributor's "contributor version".

 A contributor's "essential patent claims" are all patent claims

owned or controlled by the contributor, whether already acquired or

hereafter acquired, that would be infringed by some manner, permitted

by this License, of making, using, or selling its contributor version,

but do not include claims that would be infringed only as a

consequence of further modification of the contributor version. For

purposes of this definition, "control" includes the right to grant

patent sublicenses in a manner consistent with the requirements of

this License.

 Each contributor grants you a non-exclusive, worldwide, royalty-free

patent license under the contributor's essential patent claims, to

make, use, sell, offer for sale, import and otherwise run, modify and

propagate the contents of its contributor version.

 In the following three paragraphs, a "patent license" is any express

agreement or commitment, however denominated, not to enforce a patent

(such as an express permission to practice a patent or covenant not to

sue for patent infringement). To "grant" such a patent license to a

party means to make such an agreement or commitment not to enforce a

patent against the party.

 If you convey a covered work, knowingly relying on a patent license,

and the Corresponding Source of the work is not available for anyone

to copy, free of charge and under the terms of this License, through a

publicly available network server or other readily accessible means,

then you must either (1) cause the Corresponding Source to be so

available, or (2) arrange to deprive yourself of the benefit of the

patent license for this particular work, or (3) arrange, in a manner

consistent with the requirements of this License, to extend the patent

license to downstream recipients. "Knowingly relying" means you have

Original Author Paul Laughton, 2011 Page 236 De Re BASIC!

actual knowledge that, but for the patent license, your conveying the

covered work in a country, or your recipient's use of the covered work

in a country, would infringe one or more identifiable patents in that

country that you have reason to believe are valid.

 If, pursuant to or in connection with a single transaction or

arrangement, you convey, or propagate by procuring conveyance of, a

covered work, and grant a patent license to some of the parties

receiving the covered work authorizing them to use, propagate, modify

or convey a specific copy of the covered work, then the patent license

you grant is automatically extended to all recipients of the covered

work and works based on it.

 A patent license is "discriminatory" if it does not include within

the scope of its coverage, prohibits the exercise of, or is

conditioned on the non-exercise of one or more of the rights that are

specifically granted under this License. You may not convey a covered

work if you are a party to an arrangement with a third party that is

in the business of distributing software, under which you make payment

to the third party based on the extent of your activity of conveying

the work, and under which the third party grants, to any of the

parties who would receive the covered work from you, a discriminatory

patent license (a) in connection with copies of the covered work

conveyed by you (or copies made from those copies), or (b) primarily

for and in connection with specific products or compilations that

contain the covered work, unless you entered into that arrangement,

or that patent license was granted, prior to 28 March 2007.

 Nothing in this License shall be construed as excluding or limiting

any implied license or other defenses to infringement that may

otherwise be available to you under applicable patent law.

 12. No Surrender of Others' Freedom.

 If conditions are imposed on you (whether by court order, agreement or

otherwise) that contradict the conditions of this License, they do not

excuse you from the conditions of this License. If you cannot convey a

covered work so as to satisfy simultaneously your obligations under this

License and any other pertinent obligations, then as a consequence you may

not convey it at all. For example, if you agree to terms that obligate you

to collect a royalty for further conveying from those to whom you convey

the Program, the only way you could satisfy both those terms and this

License would be to refrain entirely from conveying the Program.

 13. Use with the GNU Affero General Public License.

 Notwithstanding any other provision of this License, you have

permission to link or combine any covered work with a work licensed

under version 3 of the GNU Affero General Public License into a single

combined work, and to convey the resulting work. The terms of this

License will continue to apply to the part which is the covered work,

but the special requirements of the GNU Affero General Public License,

section 13, concerning interaction through a network will apply to the

combination as such.

 14. Revised Versions of this License.

Original Author Paul Laughton, 2011 Page 237 De Re BASIC!

 The Free Software Foundation may publish revised and/or new versions of

the GNU General Public License from time to time. Such new versions will

be similar in spirit to the present version, but may differ in detail to

address new problems or concerns.

 Each version is given a distinguishing version number. If the

Program specifies that a certain numbered version of the GNU General

Public License "or any later version" applies to it, you have the

option of following the terms and conditions either of that numbered

version or of any later version published by the Free Software

Foundation. If the Program does not specify a version number of the

GNU General Public License, you may choose any version ever published

by the Free Software Foundation.

 If the Program specifies that a proxy can decide which future

versions of the GNU General Public License can be used, that proxy's

public statement of acceptance of a version permanently authorizes you

to choose that version for the Program.

 Later license versions may give you additional or different

permissions. However, no additional obligations are imposed on any

author or copyright holder as a result of your choosing to follow a

later version.

 15. Disclaimer of Warranty.

 THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY

APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT

HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY

OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,

THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM

IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF

ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

 16. Limitation of Liability.

 IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING

WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS

THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY

GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE

USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF

DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD

PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),

EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF

SUCH DAMAGES.

 17. Interpretation of Sections 15 and 16.

 If the disclaimer of warranty and limitation of liability provided

above cannot be given local legal effect according to their terms,

reviewing courts shall apply local law that most closely approximates

an absolute waiver of all civil liability in connection with the

Program, unless a warranty or assumption of liability accompanies a

copy of the Program in return for a fee.

 END OF TERMS AND CONDITIONS

Original Author Paul Laughton, 2011 Page 238 De Re BASIC!

Apache Commons

Portions of BASIC! use Apache Commons.

Apache Commons Net

Copyright 2001-2012 The Apache Software Foundation

This product includes software developed by

The Apache Software Foundation (http://www.apache.org/).

	Changes in this Version
	About the Title, De Re BASIC!
	About the Cover Art
	Credits
	Technical Editor
	Getting BASIC!
	BASIC! Forum
	BASIC! Tutorial
	BASIC! Operation
	Permissions
	Editor
	Editing the Program
	Multiple Commands on a Line
	Line Continuation
	# - Format Line
	Menus
	Run
	Load
	Save
	Clear
	Search
	Next Button
	Replace Button
	Replace All Button
	Done Button
	BACK Key

	Load and Run
	Save and Run
	Format
	Delete
	Preferences
	Screen Colors
	Color Scheme
	Custom Colors
	Console Settings
	Font Size
	Typeface
	Console Menu
	Console Lines
	Empty Console Color
	Editor Settings
	Editor Lines
	Editor Line Wrap
	Editor AutoIndent
	Menu Items on Action Bar
	RUN on action bar
	LOAD on action bar
	SAVE on action bar
	EXIT on action bar
	Screen Orientation
	Graphic Acceleration
	Base Drive

	Commands
	About
	Exit

	Run
	Menu
	Stop
	Editor

	Crashes

	A BASIC! Program
	Command Description Syntax
	Upper and Lower Case
	<nexp>, <sexp> and <lexp>
	<nvar>, <svar> and <lvar>
	Array[] and Array$[]
	Array[{<start>,<length>}] and Array$[{<start>,<length>}]
	{something}
	{ A | B |C }
	X, ...
	{,n} ...
	<statement>
	Optional Parameters

	Numbers
	Strings
	Variables
	Variable Names
	Variable Types
	Scalar and Array Variables
	Scalars
	Arrays
	Array Segments
	Array Commands
	Dim Array[<nexp>{, <nexp> } ...] {, Array[<nexp>{, <nexp> } ...] } ...
	UnDim Array[]{, Array[] } ...
	Array.average <Average_nvar>, Array[{<start>,<length>}]
	Array.copy SourceArray[{<start>,<length>}], DestinationArray[{{-}<extras>}]
	Array.delete Array[]{, Array[]} ...
	Array.dims Source[]{, {Dims[]}{, NumDims}}
	Array.fill Array[{<start>,<length>}], <exp>
	Array.length <length_nvar>, Array[{<start>,<length>}]
	Array.load Array[], <exp>, ...
	Array.max <Max_nvar> Array[{<start>,<length>}]
	Array.min <Min_nvar>, Array[{<start>,<length>}]
	Array.reverse Array[{<start>,<length>}]
	Array.search Array[{<start>,<length>}], <value_exp>, <result_nvar>{,<start_nexp>}
	Array.shuffle Array[{<start>,<length>}]}
	Array.sort Array[{<start>,<length>}]}
	Array.std_dev <sd_nvar>, Array[{<start>,<length>}]}
	Array.sum <sum_nvar>, Array[{<start>,<length>}]
	Array.variance <v_nvar>, Array[{<start>,<length>}]

	Data Structures and Pointers in BASIC!
	What is a Pointer
	Lists
	List Commands
	List.create N|S, <pointer_nvar>
	List.add <pointer_nexp>{, <exp>}...
	List.add.list <destination_list_pointer_nexp>, <source_list_pointer_nexp>
	List.add.array <list_pointer_nexp>, Array[{<start>,<length>}]
	List.replace <pointer_nexp>, <index_nexp>, <sexp>|<nexp>
	List.insert <pointer_nexp>, <index_nexp>, <sexp>|<nexp>
	List.remove <pointer_nexp>,<index_nexp>
	List.get <pointer_nexp>, <index_nexp>, <var>
	List.type <pointer_nexp>, <svar>
	List.size <pointer_nexp>, <nvar>
	List.clear <pointer_nexp>
	List.search <pointer_nexp>, value|value$, <result_nvar>{,<start_nexp>}
	List.toArray <pointer_nexp>, Array$[] | Array[]

	Bundles
	Bundle Auto-Create
	Bundle Commands
	Bundle.create <pointer_nvar>
	Bundle.put <pointer_nexp>, <key_sexp>, <value_nexp>|<value_sexp>
	Bundle.get <pointer_nexp>, <key_sexp>, <nvar>|<svar>
	Bundle.keys <bundle_ptr_nexp>, <list_ptr_nexp>
	Bundle.contain <pointer_nexp>, <key_sexp> , <contains_nvar>
	Bundle.type <pointer_nexp>, <key_sexp>, <type_svar>
	Bundle.remove <pointer_nexp>, <key_sexp>
	Bundle.clear <pointer_nexp>

	Stacks
	Stack Commands
	Stack.create N|S, <ptr_nvar>
	Stack.push <ptr_nexp>, <nexp>|<sexp>
	Stack.pop <ptr_nexp>, <nvar>|<svar>
	Stack.peek <ptr_nexp>, <nvar>|<svar>
	Stack.type <ptr_nexp>, <svar>
	Stack.isEmpty <ptr_nexp>, <nvar>
	Stack.clear <ptr_nexp>

	Queues

	Comments
	! - Single Line Comment
	Rem - Single Line Comment (legacy)
	!! - Block Comment
	% - Middle of Line Comment

	Expressions
	Numeric Expression <nexp>
	Numeric Operators <noperator>
	Numeric Expression Examples
	Pre- and Post-Increment Operators

	String Expression <sexp>
	Logical Expression <lexp>
	Logical Operators
	Examples of Logical Expressions

	Parentheses

	Assignment Operations
	Let
	OpEqual Assignment Operations

	Math Functions
	BOR(<nexp1>, <nexp2>)
	BAND(<nexp1>, <nexp2>)
	BXOR(<nexp1>, <nexp2>)
	BNOT(<nexp>)
	ABS(<nexp>)
	SGN(<nexp>)
	RANDOMIZE({<nexp>})
	RND()
	MAX(<nexp>, <nexp>)
	MIN(<nexp>, <nexp>)
	CEIL(<nexp>)
	FLOOR(<nexp>)
	INT(<nexp>)
	FRAC(<nexp>)
	MOD(<nexp1>, <nexp2>)
	ROUND(<value_nexp>{, <count_nexp>{, <mode_sexp>}})
	SQR(<nexp>)
	CBRT(<nexp>)
	LOG(<nexp>)
	LOG10(<nexp>)
	EXP(<nexp>)
	POW(<nexp1>, <nexp2>)
	HYPOT(<nexp_x>, <nexp_y)
	PI()
	SIN(<nexp>)
	COS(<nexp>)
	TAN(<nexp>)
	SINH(<nexp>)
	COSH(<nexp>)
	ASIN(<nexp>)
	ACOS(<nexp>)
	ATAN(<nexp>)
	ATAN2(<nexp_y>, <nexp_x>)
	TODEGREES(<nexp>)
	TORADIANS(<nexp>)
	VAL(<sexp>)
	IS_NUMBER(<sexp>)
	LEN(<sexp>)
	HEX(<sexp>)
	OCT(<sexp>)
	BIN(<sexp>)
	SHIFT(<value_nexp>, <bits_nexp>)
	ASCII(<sexp>{, <index_nexp>})
	UCODE(<sexp>{, <index_nexp>})
	IS_IN(<sub_sexp>, <base_sexp>{, <start_nexp>})
	STARTS_WITH(<sub_sexp>, <base_sexp>{, <start_nexp>})
	ENDS_WITH(<sub_sexp>, <base_sexp>)
	GR_COLLISION(<object_1_nvar>, <object_2_nvar>)
	BACKGROUND()

	Time Functions
	CLOCK()
	TIME()
	TIME(<year_exp>, <month_exp>, <day_exp>, <hour_exp>, <minute_exp>, <second_exp>)

	String Functions
	GETERROR$()
	CHR$(<nexp>, ...)
	LEFT$(<sexp>, <count_nexp>)
	MID$(<sexp>, <start_nexp>{, <count_nexp>})
	RIGHT$(<sexp>, <count_nexp>)
	REPLACE$(<sexp>, <argument_sexp>, <replace_sexp>)
	TRIM$(<sexp>{, <test_sexp>})
	LTRIM$(<sexp>{, <test_sexp>})
	RTRIM$(<sexp>{, <test_sexp>})
	WORD$(<source_sexp>, <n_nexp> {, <test_sexp>})
	ENCODE$(<type_sexp>, {<qualifier_sexp>}, <source_sexp>)
	DECODE$(<type_sexp>, {<qualifier_sexp>}, <source_sexp>)
	ENCODE$(<charset_sexp>, <source_sexp>)
	DECODE$(<charset_sexp>, <buffer_sexp>)
	STR$(<nexp>)
	LOWER$(<sexp>)
	UPPER$(<sexp>)
	VERSION$()
	INT$(<nexp>)
	HEX$(<nexp>)
	OCT$(<nexp>)
	BIN$(<nexp>)
	USING$({<locale_sexp>} , <format_sexp> { , <exp>}...)
	Locale expression
	Format expression
	Format Specifiers
	Optional Modifiers
	Index
	Flags
	Width
	Precision

	Integer values

	FORMAT_USING$(<locale_sexp>, <format_sexp> { , <exp>}...)
	FORMAT$(<pattern_sexp>, <nexp>)
	Notes
	Examples

	User-Defined Functions
	Variable Scope
	Data Structures in User-Defined Functions
	Commands
	Fn.def name|name$({nvar}|{svar}|Array[]|Array$[], ... {nvar}|{svar}|Array[]|Array$[])
	Fn.rtn <sexp>|<nexp>
	Fn.end
	Call <user_defined_function>

	Program Control Commands
	If / Then / Else / Elseif / Endif
	If / Then / Else
	For - To - Step / Next
	F_N.continue
	F_N.break
	While <lexp> / Repeat
	W_R.continue
	W_R.break
	Do / Until <lexp>
	D_U.continue
	D_U.break
	Labels, GOTO, GOSUB, and RETURN: Traditional BASIC
	Label
	GoTo <label>
	GoTo <index_nexp>, <label>...
	GoSub <label> / Return
	GoSub <index_nexp>, <label>... / Return

	Using Source Code from Multiple Files
	Include FilePath
	Run <filename_sexp> {, <data_sexp>}

	Switch Commands
	Nesting Switch Operations
	Sw.begin <exp>
	Sw.case <exp>, ...
	Sw.case <op><exp>
	Sw.break
	Sw.default
	Sw.end

	Interrupt Labels (Event Handlers)
	All Interrupt Labels
	OnError:
	OnConsoleTouch:
	ConsoleTouch.resume
	OnBackKey:
	Back.resume
	OnMenuKey:
	MenuKey.resume
	OnKeyPress:
	Key.resume
	OnLowMemory:
	LowMemory.resume

	End{ <msg_sexp>}
	Exit

	READ – DATA – RESTORE Commands
	Read.data <number>|<string>{,<number>|<string>...,<number>|<string>}
	Read.next <var>, ...
	Read.from <nexp>

	Debug Commands
	Debug.on
	Debug.off
	Debug.echo.on
	Echo.on
	Debug.echo.off
	Echo.off
	Debug.print
	Debug.dump.scalars
	Debug.dump.array Array[]
	Debug.dump.bundle <bundlePtr_nexp>
	Debug.dump.list <listPtr_nexp>
	Debug.dump.stack <stackPtr_nexp>
	Debug.show.scalars
	Debug.show.array Array[]
	Debug.show.bundle <bundlePtr_nexp>
	Debug.show.list <listPtr_nexp>
	Debug.show.stack <stackPtr_nexp>
	Debug.watch var, ...
	Debug.show.watch
	Debug.show.program
	Debug.show

	Fonts
	Font.load <font_ptr_nvar>, <filename_sexp>
	Font.delete {<font_ptr_nexp>}
	Font.clear

	Console I/O
	Output Console
	Print {<exp> {,|;}} ...
	? {<exp> {,|;}} ...
	Print with User-Defined Functions
	Cls
	Console.front
	Console.line.count <count_nvar>
	Console.line.text <line_nexp>, <text_svar>
	Console.line.touched <line_nvar> {, <press_lvar>}
	Console.save <filename_sexp>
	Console.title { <title_sexp>}

	User Input and Interaction
	Dialog.message {<title_sexp>}, {<message_sexp>}, <sel_nvar> {, <button1_sexp>{, <button2_sexp>{, <button3_sexp>}}}
	Dialog.select <sel_nvar>, <Array$[]>|<list_nexp> {,<title_sexp>}
	Input {<prompt_sexp>}, <result_var>{, {<default_exp>}{, <canceled_nvar>}}
	Inkey$ <svar>
	Popup <message_sexp> {{, <x_nexp>}{, <y_nexp>}{, <duration_lexp>}}
	Select <sel_nvar>, <Array$[]>|<list_nexp> {,<title_sexp> {, <message_sexp> } } {,<press_lvar> }
	Text.input <svar>{, { <text_sexp>} , <title_sexp> }
	TGet <result_svar>, <prompt_sexp> {, <title_sexp>}
	Kb.hide
	Kb.show
	Kb.toggle
	Kb.showing <lvar>
	OnKbChange:
	Kb.resume
	The Soft Keyboard and the BACK Key

	Working with Files
	Paths Explained
	Paths and Case-sensitivity
	Mark and Mark Limit

	File Commands
	File.delete <lvar>, <path_sexp>
	File.dir <path_sexp>, Array$[] {,<dirmark_sexp>}
	File.exists <lvar>, <path_sexp>
	File.mkdir <path_sexp>
	File.rename <old_path_sexp>, <new_path_sexp>
	File.root <svar>
	File.size <size_nvar>, <path_sexp>
	File.type <type_svar>, <path_sexp>

	Text File I/O
	Text.open {r|w|a}, <file_table_nvar>, <path_sexp>
	Text.close <file_table_nexp>
	Text.readln <file_table_nexp> {,<svar>}...
	Text.writeln <file_table_nexp>, <parms same as Print>
	Text.eof <file_table_nexp>, <lvar>
	Text.position.get <file_table_nexp>, <position_nvar>
	Text.position.set <file_table_nexp>, <position_nexp>
	Text.position.mark {{<file_table_nexp>}{, <marklimit_nexp>}}
	GrabURL <result_svar>, <url_sexp>{, <timeout_nexp>}
	GrabFile <result_svar>, <path_sexp>{, <unicode_flag_lexp>}

	Byte File I/O
	Byte.open {r|w|a}, <file_table_nvar>, <path_sexp>
	Byte.close <file_table_nexp>
	Byte.read.byte <file_table_nexp> {,<nvar>}...
	Byte.write.byte <file_table_nexp> {{,<nexp>}...{,<sexp>}}
	Byte.read.number <file_table_nexp> {,<nvar>...}
	Byte.write.number <file_table_nexp> {,<nexp>}...
	Byte.read.buffer <file_table_nexp>, <count_nexp>, <buffer_svar>
	Byte.write.buffer <file_table_nexp>, <buffer_sexp>
	Byte.eof <file_table_nexp>, <lvar>
	Byte.position.get <file_table_nexp>, <position_nvar>
	Byte.position.set <file_table_nexp>, <position_nexp>
	Byte.position.mark {{<file_table_nexp>}{, <marklimit_nexp>}}
	Byte.truncate <file_table_nexp>,<length_nexp>
	Byte.copy <file_table_nexp>,<output_file_sexp>

	HTML
	Introduction
	HTML Commands
	Html.open {<ShowStatusBar_lexp> {, <Orientation_nexp>}}
	Html.orientation <nexp>
	Html.load.url <file_sexp>
	Html.load.string <html_sexp>
	Html.post <url_sexp>, <list_nexp>
	Html.get.datalink <data_svar>
	Html.go.back
	Html.go.forward
	Html.close
	Html.clear.cache
	Html.clear.history

	Related Commands
	Browse <url_sexp>
	Http.post <url_sexp>, <list_nexp>, <result_svar>

	TCP/IP Sockets
	TCP/IP Client Socket Commands
	Socket.client.connect <server_sexp>, <port_nexp> { , <wait_lexp> }
	Socket.client.status <status_nvar>
	Socket.client.server.ip <svar>
	Socket.client.read.line <line_svar>
	Socket.client.read.ready <nvar>
	Socket.client.read.file <file_nexp>
	Socket.client.write.line <line_sexp>
	Socket.client.write.bytes <sexp>
	Socket.client.write.file <file_nexp>
	Socket.client.close

	TCP/IP Server Socket Commands
	Socket.myIP <svar>
	Socket.myIP <array$[]>{, <nvar>}
	Socket.server.create <port_nexp>
	Socket.server.connect {<wait_lexp>}
	Socket.server.status <status_nvar>
	Socket.server.read.line <svar>
	Socket.server.read.ready <nvar>
	Socket.server.write.line <line_sexp>
	Socket.server.write.bytes <sexp>
	Socket.server.write.file <file_nexp>
	Socket.server.read.file <file_nexp>
	Socket.server.disconnect
	Socket.server.close
	Socket.server.client.ip <nvar>

	FTP Client
	Ftp.open <url_sexp>, <port_nexp>, <user_sexp>, <pw_sexp>
	Ftp.close
	Ftp.put <source_sexp>, <destination_sexp>
	Ftp.get <source_sexp>, <destination_sexp>
	Ftp.dir <list_nvar> {,<dirmark_sexp>}
	Ftp.cd <new_directory_sexp>
	Ftp.rename <old_filename_sexp>, <new_filename_sexp>
	Ftp.delete <filename_sexp>
	Ftp.rmdir <directory_sexp>
	Ftp.mkdir <directory_sexp>

	Bluetooth
	Bt.open {0|1}
	Bt.close
	Bt.connect {0|1}
	Bt.disconnect
	Bt.reconnect
	Bt.status {{<connect_var>}{, <name_svar>}{, <address_svar>}}
	Bt.write {<exp> {,|;}} ...
	Bt.read.ready <nvar>
	OnBtReadReady:
	Bt.onReadReady.resume

	Bt.read.bytes <svar>
	Bt.device.name <svar>
	Bt.set.UUID <sexp>

	Communication: Phone and Text
	Email.send <recipient_sexp>, <subject_sexp>, <body_sexp>
	MyPhoneNumber <svar>
	Phone.call <sexp>
	Phone.dial <sexp>
	Phone.rcv.init
	Phone.rcv.next <state_nvar>, <number_svar>
	Sms.send <number_sexp>, <message_sexp>
	Sms.rcv.init
	Sms.rcv.next <svar>

	Time and Timers
	Time and TimeZone Commands
	Time {<time_nexp>,} Year$, Month$, Day$, Hour$, Minute$, Second$, WeekDay, isDST
	TimeZone.set { <tz_sexp> }
	TimeZone.get <tz_svar>
	TimeZone.list <tz_list_pointer_nexp>

	Timer Interrupt and Commands
	Timer.set <interval_nexp>
	OnTimer:
	Timer.resume
	Timer.clear
	Sample Code

	Clipboard
	Clipboard.get <svar>
	Clipboard.put <sexp>

	Encryption
	Encrypt {<pw_sexp>}, <source_sexp>, <encrypted_svar>
	Decrypt <pw_sexp>, <encrypted_sexp>, <decrypted_svar>

	Ringer
	Ringer.get.mode <nvar>
	Ringer.set.mode <nexp>
	Ringer.get.volume <vol_nvar> { , <max_nvar> }
	Ringer.set.volume <nexp>

	String Operations
	Join <source_array$[]>, <result_svar> {, <separator_sexp>{, <wrapper_sexp}}
	Join.all <source_array$[]>, <result_svar> {, <separator_sexp>{, <wrapper_sexp}}
	Split <result_array$[]>, <sexp> {, <test_sexp>}
	Split.all <result_array$[]>, <sexp> {, <test_sexp>}

	Speech Conversion
	Text To Speech
	TTS.init
	TTS.speak <sexp> {, <wait_lexp>}
	TTS.speak.toFile <sexp> {, <path_sexp>}
	TTS.stop

	Speech To Text (Voice Recognition)
	STT.listen {<prompt_sexp>}
	Console Mode
	Graphics Mode
	HTML Mode

	Information About Your Android Device
	Device <svar>
	Device <nexp>|<nvar>
	Phone.info <nexp>|<nvar>
	Screen rotation, size[], realsize[], density
	Screen.rotation <nvar>
	Screen.size, size[], realsize[], density
	WiFi.info {{<SSID_svar>}{, <BSSID_svar>}{, <MAC_svar>}{, <IP_var>}{, <speed_nvar>}}

	Running in the Background
	Home
	OnBackground:
	Background.resume

	WakeLock <code_nexp>
	WifiLock <code_nexp>

	Miscellaneous Commands
	Headset <state_nvar>, <type_svar>, <mic_nvar>
	Notify <title_sexp>, <subtitle_sexp>, <alert_sexp>, <wait_lexp>
	Pause <ticks_nexp>
	Swap <nvar_a>|<svar_a>, <nvar_b>|<svar_b>
	Tone <frequency_nexp>, <duration_nexp> {, <duration_chk_lexp}
	Vibrate <pattern_array[{<start>,<length>}]>,<nexp>
	VolKeys
	VolKeys.off
	VolKeys.on

	SQLITE
	Overview
	SQLITE Commands
	Sql.open <DB_pointer_nvar>, <DB_name_sexp>
	Sql.close <DB_pointer_nvar>
	Sql.new_table <DB_pointer_nvar>, <table_name_sexp>, C1$, C2$, ...,CN$
	Sql.drop_table <DB_pointer_nvar>, <table_name_sexp>
	Sql.insert <DB_pointer_nvar>, <table_name_sexp>, C1$, V1$, C2$, V2$, ..., CN$, VN$
	Sql.query <cursor_nvar>, <DB_pointer_nvar>, <table_name_sexp>, <columns_sexp> {, <where_sexp> {, <order_sexp>} }
	Sql.query.length <length_nvar>, <cursor_nvar>
	Sql.query.position <position_nvar>, <cursor_nvar>
	Sql.next <done_lvar>, <cursor_nvar>{, <cv_svars>}
	Sql.delete <DB_pointer_nvar>, <table_name_sexp>{,<where_sexp>{,<count_nvar>} }
	Sql.update <DB_pointer_nvar>, <table_name_sexp>, C1$, V1$, C2$, V2$,...,CN$, VN${: <where_sexp>}
	Sql.exec <DB_pointer_nvar>, <command_sexp>
	Sql.raw_query <cursor_nvar>, <DB_pointer_nvar>, <query_sexp>

	Graphics
	Introduction
	The Graphics Screen and Graphics Mode
	Display Lists
	Drawing Coordinates
	Drawing into Bitmaps
	Colors
	Paints
	Basic usage
	Advanced usage

	Style
	STROKE
	FILL
	STROKE and FILL

	Hardware-accelerated Graphics

	Graphics Setup Commands
	Gr.open {{alpha}{, red}{, green}{, blue}{, <ShowStatusBar_lexp>}{, <Orientation_nexp>}}
	Gr.color {{alpha}{, red}{, green}{, blue}{, style}{, paint}}
	Gr.set.antialias {{<lexp>}{,<paint_nexp>}}
	Gr.set.stroke {{<nexp>}{,<paint_nexp>}}
	Gr.orientation <nexp>
	Gr.statusbar {<height_nvar>} {, showing_lvar}
	Gr.statusbar.show <nexp>
	Gr.render
	Gr.screen width, height{, density }
	Gr.scale x_factor, y_factor
	Gr.cls
	Gr.close
	Gr.front flag
	Gr.brightness <nexp>

	Graphical Object Creation Commands
	Gr.point <obj_nvar>, x, y
	Gr.line <obj_nvar>, x1, y1, x2, y2
	Gr.rect <ob_nvar>, left, top, right, bottom
	Gr.oval <obj_nvar>, left, top, right, bottom
	Gr.arc <obj_nvar>, left, top, right, bottom, start_angle, sweep_angle, fill_mode
	Gr.circle <obj_nvar>, x, y, radius
	Gr.set.pixels <obj_nvar>, pixels[{<start>,<length>}] {,x,y}
	Gr.poly <obj_nvar>, list_pointer {,x, y}

	Groups
	Gr.group <object_number_nvar>{, <obj_nexp>}...
	Gr.group.list <object_number_nvar>, <list_ptr_nexp>
	Gr.group.getDL <object_number_nvar>
	Gr.group.newDL <object_number_nvar>

	Hide and Show Commands
	Gr.hide <object_number_nexp>
	Gr.show <object_number_nexp>
	Gr.show.toggle <object_number_nexp>

	Touch Query Commands
	Gr.touch touched, x, y
	Gr.bounded.touch touched, left, top, right, bottom
	Gr.touch2 touched, x, y
	Gr.bounded.touch2 touched, left, top, right, bottom
	OnGrTouch:
	Gr.onGrTouch.resume

	Text Commands
	Overview
	Gr.text.align {{<type_nexp>}{,<paint_nexp>}}
	Gr.text.bold {{<lexp>}{,<paint_nexp>}}
	Gr.text.size {{<size_nexp>}{,<paint_nexp>}}
	Gr.text.skew {{<skew_nexp>}{,<paint_nexp>}}
	Gr.text.strike {{<lexp>}{,<paint_nexp>}}
	Gr.text.underline {{<lexp>}{,<paint_nexp>}}
	Gr.text.setfont {{<font_ptr_nexp>|<font_family_sexp>} {, <style_sexp>} {,<paint_nexp>}}
	Gr.text.typeface {{<font_nexp>} {, <style_nexp>} {,<paint_nexp>}}
	Gr.text.height {<height_nvar>} {, <up_nvar>} {, <down_nvar>}
	Gr.text.width <nvar>, <exp>
	Gr.get.textbounds <exp>, left, top, right, bottom
	Gr.text.draw <object_number_nvar>, <x_nexp>, <y_nexp>, <text_object_sexp>

	Bitmap Commands
	Overview
	Gr.bitmap.create <bitmap_ptr_nvar>, width, height
	Gr.bitmap.load <bitmap_ptr_nvar>, <file_name_sexp>
	Gr.bitmap.size <bitmap_ptr_nexp>, width, height
	Gr.bitmap.scale <new_bitmap_ptr_nvar>, <bitmap_ptr_nexp>, width, height {, <smoothing_lexp>}
	Gr.bitmap.delete <bitmap_ptr_nexp>
	Gr.bitmap.crop <new_bitmap_ptr_nvar>, <source_bitmap_ptr_nexp>, <x_nexp>, <y_nexp>, <width_nexp>, <height_nexp>
	Gr.bitmap.save <bitmap_ptr_nvar>, <filename_sexp>{, <quality_nexp>}
	Gr.bitmap.draw <object_ptr_nvar>, <bitmap_ptr_nexp>, x , y
	Gr.get.bmpixel <bitmap_ptr_nvar>, x, y, alpha, red, green, blue
	Gr.bitmap.fill <bitmap_ptr_nexp>, <x_nexp>, <y_nexp>
	Gr.bitmap.drawinto.start <bitmap_ptr_nexp>
	Gr.bitmap.drawinto.end

	Paint Commands
	Gr.paint.copy {{<src_nexp>}{, <dst_nexp>}}
	Gr.paint.get <object_ptr_nvar>
	Gr.paint.reset {<nexp>}

	Rotate Commands
	Gr.rotate.start angle, x, y{,<obj_nvar>}
	Gr.rotate.end {<obj_nvar>}

	Camera Commands
	Gr.camera.select 1|2
	Gr.camera.shoot <bm_ptr_nvar>
	Gr.camera.autoshoot <bm_ptr_nvar>{, <flash_ mode_nexp> {, focus_mode_nexp} }
	Gr.camera.manualShoot <bm_ptr_nvar>{, <flash_ mode_nexp> {, focus_mode_nexp} }

	Other Graphics Commands
	Gr.screen.to_bitmap <bm_ptr_nvar>
	Gr.get.pixel x, y, alpha, red, green, blue
	Gr.save <filename_sexp> {,<quality_nexp>}
	Gr.get.type <object_ptr_nexp>, <type_svar>
	Gr.get.params <object_ptr_nexp>, <param_array$[]>
	Gr.get.position <object_ptr_nexp>, x, y
	Gr.move <object_ptr_nexp> {{, dx}{, dy}}
	Gr.get.value <object_ptr_nexp> {, <tag_sexp>, <value_nvar | value_svar>}...
	Gr.modify <object_ptr_nexp> {, <tag_sexp>, <value_nexp | value_sexp>}...
	General Purpose Parameters

	GR_COLLISION(<object_1_nexp>, <object_2_nexp>)
	Gr.clip <object_ptr_nexp>, <left_nexp>, <top_nexp>, <right_nexp>, <bottom_nexp>{, <RO_nexp>}
	Gr.newDL <dl_array[{<start>,<length>}]>
	Gr.getDL <dl_array[]> {, <keep_all_objects_lexp> }

	Audio Interface
	Introduction
	The Audio Interface
	Audio File Types

	Commands
	Audio.load <aft_nvar>, <filename_sexp>
	Audio.play <aft_nexp>
	Audio.stop
	Audio.pause
	Audio.loop
	Audio.volume <left_nexp>, <right_nexp>
	Audio.position.current <nvar>
	Audio.position.seek <nexp>
	Audio.length <length_nvar>, <aft_nexp>
	Audio.release <aft_nexp>
	Audio.isdone <lvar>
	Audio.record.start <fn_svar>
	Audio.record.stop

	SoundPool
	Introduction
	Commands
	Soundpool.open <MaxStreams_nexp>
	Soundpool.load <soundID_nvar>, <file_path_sexp>
	Soundpool.unload <soundID_nexp>
	Soundpool.play <streamID_nvar>, <soundID_nexp>, <rightVolume_nexp>, <leftVolume_nexp>, <priority_nexp>, <loop_nexp>, <rate_nexp>
	Soundpool.setvolume <streamID_nexp>, <leftVolume_nexp>, <rightVolume_nexp>
	Soundpool.setrate <streamID_nexp>, <rate_nexp>
	Soundpool.setpriority <streamID_nexp>, <priority_nexp>
	Soundpool.pause <streamID_nexp>
	Soundpool.resume <streamID_nexp>
	Soundpool.stop <streamID_nexp>
	Soundpool.release

	GPS
	GPS Control commands
	Gps.open {{<status_nvar>},{<time_nexp>},{<distance_nexp>}}
	Gps.close
	Gps.status {{<status_var>}, {<infix_nvar>},{inview_nvar}, {<sat_list_nexp>}}

	GPS Location commands
	Gps.location {{<time_nvar>}, {<prov_svar>}, {<count_nvar}, {<acc_nvar>}, {<lat_nvar>}, {<long_nvar>}, {<alt_nvar>}, {<bear_nvar>}, {<speed_nvar>}}
	Gps.time <nvar>
	Gps.provider <svar>
	Gps.satellites {{<count_nvar>}, {<sat_list_nexp>}}
	Gps.accuracy <nvar>
	Gps.latitude <nvar>
	Gps.longitude <nvar>
	Gps.altitude <nvar>
	Gps.bearing <nvar>
	Gps.speed <nvar>

	Sensors
	Introduction
	Sensor Commands
	Sensors.list <sensor_array$[]>
	Sensors.open <type_nexp>{:<delay_nexp>}{, <type_nexp>{:<delay_nexp>}, ...}
	Sensors.read sensor_type_nexp, p1_nvar, p2_nvar, p3_nvar
	Sensors.close

	System
	System Commands
	System.open
	System.write <sexp>
	System.read.ready <nvar>
	System.read.line <svar>
	System.close

	Superuser Commands
	Su.open
	Su.write <sexp>
	Su.read.ready <nvar>
	Su.read.line <svar>
	Su.close

	App Commands
	App.broadcast <action_sexp>, <data_uri_sexp>, <package_sexp>, <component_sexp>, <mime_type_sexp>, <categories_sexp>, <extras_bptr_nexp>, <flags_nexp>
	App.start <action_sexp>, <data_uri_sexp>, <package_sexp>, <component_sexp>, <mime_type_sexp>, <categories_sexp>, <extras_bptr_nexp>, <flags_nexp>

	Appendix A – Command List
	Appendix B – Sample Programs
	Appendix C – Launcher Shortcut Tutorial
	Introduction
	How to Make a Shortcut Application (older versions of Android—prior to Android 4.0)
	How to Make a Shortcut Application (newer versions of Android—Android 4.0 and later)
	What you need to know

	Appendix D – Building a Standalone Application
	Introduction
	License Information
	Before You Start
	Setting Up the Development Environment
	Download the BASIC! Source Code from the GitHub Repository
	Download the BASIC! Source Code from the Legacy Archive
	Create a New Project in Eclipse
	Rename the Package
	In Eclipse
	Other IDEs
	Renaming complete

	Modifications to setup.xml
	Advanced Customization with setup.xml
	Files and Resources
	Testing the APK
	Installing a BASIC! Program into the Application
	Application Icons
	Modifications to the AndroidManifest.xml File
	Setting the Version Number and Version Name
	Permissions
	Disable the Shortcut Launcher
	Launch at device boot

	Preferences
	Finished

	Appendix E – BASIC! Distribution License
	Apache Commons

